• Title/Summary/Keyword: HD-map

Search Result 64, Processing Time 0.021 seconds

A Prospect on the Changes in Short-term Cold Hardiness in "Campbell Early" Grapevine under the Future Warmer Winter in South Korea (남한의 겨울기온 상승 예측에 따른 포도 "캠벨얼리" 품종의 단기 내동성 변화 전망)

  • Chung, U-Ran;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.10 no.3
    • /
    • pp.94-101
    • /
    • 2008
  • Warming trends during winter seasons in East Asian regions are expected to accelerate in the future according to the climate projection by the Inter-governmental Panel on Climate Change (IPCC). Warmer winters may affect short-term cold hardiness of deciduous fruit trees, and yet phenological observations are scant compared to long-term climate records in the regions. Dormancy depth, which can be estimated by daily temperature, is expected to serve as a reasonable proxy for physiological tolerance of flowering buds to low temperature in winter. In order to delineate the geographical pattern of short-term cold hardiness in grapevines, a selected dormancy depth model was parameterized for "Campbell Early", the major cultivar in South Korea. Gridded data sets of daily maximum and minimum temperature with a 270m cell spacing ("High Definition Digital Temperature Map", HDDTM) were prepared for the current climatological normal year (1971-2000) based on observations at the 56 Korea Meteorological Administration (KMA) stations and a geospatial interpolation scheme for correcting land surface effects (e.g., land use, topography, and site elevation). To generate relevant datasets for climatological normal years in the future, we combined a 25km-resolution, 2011-2100 temperature projection dataset covering South Korea (under the auspices of the IPCC-SRES A2 scenario) with the 1971-2000 HD-DTM. The dormancy depth model was run with the gridded datasets to estimate geographical pattern of change in the cold-hardiness period (the number of days between endo- and forced dormancy release) across South Korea for the normal years (1971-2000, 2011-2040, 2041-2070, and 2071-2100). Results showed that the cold-hardiness zone with 60 days or longer cold-tolerant period would diminish from 58% of the total land area of South Korea in 1971-2000 to 40% in 2011-2040, 14% in 2041-2070, and less than 3% in 2071-2100. This method can be applied to other deciduous fruit trees for delineating geographical shift of cold-hardiness zone under the projected climate change in the future, thereby providing valuable information for adaptation strategy in fruit industry.

Explorations of Hydrothermal Vents in Southern Mariana Arc Submarine Volcanoes using ROV Hemire (심해무인잠수정 해미래를 이용한 남마리아나 아크 해저화산 열수분출공 탐사)

  • Lee, Pan-Mook;Jun, Bong-Huan;Baek, Hyuk;Kim, Banghyun;Shim, Hyungwon;Park, Jin-Yeong;Yoo, Seong-Yeol;Jeong, Woo-Young;Baek, Sehun;Kim, Woong-Seo
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.389-399
    • /
    • 2016
  • This paper presents the explorations of hydrothermal vents located in the Marina Arc and Back Arc Basin using the deep-sea ROV Hemire. These explorations were conducted by KRISO and KIOST to demonstrate the capability of Hemire in various applications for deep-sea scientific research. The missions included the following: (1) to search the reported vents, (2) conduct visual inspections, (3) deploy/recover a sediment trap and bait traps, (4) sample sediment/water/rock, (5) measure the magnetic field at the vent site, and (6) acquire a detailed map using multi-beam sonar near the bottom. We installed three HD cameras for precise visual inspection, a high-temperature thermometer, a three-component magnetometer, and a multi-beam sonar to acquire details of the bottom contour or identify vents in the survey area. The explorations were performed in an expedition from March 23 to April 5, 2016, and the missions were successfully completed. This paper discusses the operational process, navigation, and control of Hemire, as well as the exploration results.

A study on trends and predictions through analysis of linkage analysis based on big data between autonomous driving and spatial information (자율주행과 공간정보의 빅데이터 기반 연계성 분석을 통한 동향 및 예측에 관한 연구)

  • Cho, Kuk;Lee, Jong-Min;Kim, Jong Seo;Min, Guy Sik
    • Journal of Cadastre & Land InformatiX
    • /
    • v.50 no.2
    • /
    • pp.101-115
    • /
    • 2020
  • In this paper, big data analysis method was used to find out global trends in autonomous driving and to derive activate spatial information services. The applied big data was used in conjunction with news articles and patent document in order to analysis trend in news article and patents document data in spatial information. In this paper, big data was created and key words were extracted by using LDA (Latent Dirichlet Allocation) based on the topic model in major news on autonomous driving. In addition, Analysis of spatial information and connectivity, global technology trend analysis, and trend analysis and prediction in the spatial information field were conducted by using WordNet applied based on key words of patent information. This paper was proposed a big data analysis method for predicting a trend and future through the analysis of the connection between the autonomous driving field and spatial information. In future, as a global trend of spatial information in autonomous driving, platform alliances, business partnerships, mergers and acquisitions, joint venture establishment, standardization and technology development were derived through big data analysis.

Plant Hardiness Zone Mapping Based on a Combined Risk Analysis Using Dormancy Depth Index and Low Temperature Extremes - A Case Study with "Campbell Early" Grapevine - (최저기온과 휴면심도 기반의 동해위험도를 활용한 'Campbell Early' 포도의 내동성 지도 제작)

  • Chung, U-Ran;Kim, Soo-Ock;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.10 no.4
    • /
    • pp.121-131
    • /
    • 2008
  • This study was conducted to delineate temporal and spatial patterns of potential risk of cold injury by combining the short-term cold hardiness of Campbell Early grapevine and the IPCC projected climate winter season minimum temperature at a landscape scale. Gridded data sets of daily maximum and minimum temperature with a 270m cell spacing ("High Definition Digital Temperature Map", HD-DTM) were prepared for the current climatological normal year (1971-2000) based on observations at the 56 Korea Meteorological Administration (KMA) stations using a geospatial interpolation scheme for correcting land surface effects (e.g., land use, topography, and elevation). The same procedure was applied to the official temperature projection dataset covering South Korea (under the auspices of the IPCC-SRES A2 and A1B scenarios) for 2071-2100. The dormancy depth model was run with the gridded datasets to estimate the geographical pattern of any changes in the short-term cold hardiness of Campbell Early across South Korea for the current and future normal years (1971-2000 and 2071-2100). We combined this result with the projected mean annual minimum temperature for each period to obtain the potential risk of cold injury. Results showed that both the land areas with the normal cold-hardiness (-150 and below for dormancy depth) and those with the sub-threshold temperature for freezing damage ($-15^{\circ}C$ and below) will decrease in 2071-2100, reducing the freezing risk. Although more land area will encounter less risk in the future, the land area with higher risk (>70%) will expand from 14% at the current normal year to 23 (A1B) ${\sim}5%$ (A2) in the future. Our method can be applied to other deciduous fruit trees for delineating geographical shift of cold-hardiness zone under the projected climate change in the future, thereby providing valuable information for adaptation strategy in fruit industry.