• 제목/요약/키워드: HCT116 cells

검색결과 221건 처리시간 0.032초

결장암세포에서 sanguinarine에 의한 종양억제 유전자 p53 의존적 apoptosis 유도 (Induction of Tumor Suppressor Gene p53-dependent Apoptosis by Sanguinarine in HCT116 Human Colorectal Cancer Cells)

  • 최영현
    • 생명과학회지
    • /
    • 제31권4호
    • /
    • pp.400-409
    • /
    • 2021
  • 천연 benzophenanthridine alkaloid의 일종인 sanguinarine에 의한 인간 암세포에서의 세포사멸 유도는 암 치료를 위한 잠재적 치료 가능성으로 여겨져 왔으나 기본적인 항암 기전은 여전히 불분명하다. 종양 억제제 p53의 결실 또는 돌연변이는 결장암세포의 항암제 내성에 대한 주요 원인으로 작용하다. 따라서, 본 연구에서는 정상 p53을 가진 HCT116 (p53+/+) 및 p53이 결여된 HCT116 (p53-/-) 결장암세포를 대상으로 sanguinarine에 의해 유도되는 세포사멸에서 p53의 역할을 조사하였다. 본 연구의 결과에 의하면, sanguinarine은 HCT116 (p53-/-) 세포에 비하여 HCT116 (p53+/+) 세포의 생존력을 현저히 감소시켰다. 아울러 sanguinarine은 HCT116 (p53-/-) 세포보다 HCT116 (p53+/+) 세포에서 p53 및 cyclin-dependent kinase 억제제 p21WAF1/CIP1의 발현을 증가시키면서 DNA 손상 및 세포사멸의 유도를 증가시켰다. Sanguinarine은 HCT116 (p53+/+) 세포에서 외인성 및 내인성 세포사멸의 개시에 관여하는 caspase-8 및 caspase-9의 활성을 증가시켰으며, 전형적인 효과기 caspase인 caspase-3을 활성화시켰다. 또한, sanguinarine은 HCT116 (p53+/+) 세포에서 Bax/Bcl-2의 발현 비율을 증가시키고 미토콘드리아 손상을 유발하였지만, HCT116 (p53-/-) 세포에서는 이러한 현상이 관찰되지 않았다. 결론적으로 본 연구의 결과는 sanguinarine은 HCT116 결장암세포에서 p53 의존적으로 외인성 및 내인성 세포사멸의 경로 활성을 통하여 세포사멸을 유도하였음을 의미한다.

TNF-${\alpha}$ Regulates Potassium Cyanate-induced Apoptosis via NF-${\kappa}B$ Activation in HCT 116 Cells

  • Yang, Eun Ju;Chang, Jeong Hyun
    • 대한의생명과학회지
    • /
    • 제20권1호
    • /
    • pp.32-38
    • /
    • 2014
  • Potassium cyanate (KOCN) that is known as an inducer of the protein carbamylation is an inorganic compound and is the conjugate based of cyanic acid (HOCN). Based on these studies, we confirmed that KOCN induces the apoptosis of the human colorectal cancer cell line, HCT 116 cells, by various mitochondrial pathways. To investigate other mechanisms of KOCN-mediated apoptosis, in the present study, we examined KOCN-induced cytokines production in HCT 116 cells and identified the intracellular signaling pathway in these processes. We first demonstrated that KOCN considerably increased the cell apoptosis via intracellular $Ca^{2+}$ signaling, mitochondrial dysfunction and ROS production. And then we examined TNF-${\alpha}$ and IL-$1{\beta}$ levels mediated by KOCN in HCT 116 cells. Although IL-$1{\beta}$ was not involved in KOCN-mediated HCT 116 cell apoptosis, the release of TNF-${\alpha}$ was mediated by KOCN in HCT 116 cells via NF-${\kappa}B$ activation. Apoptosis was also enhanced by incubation with supernatants from HCT 116 cells after KOCN treatment and this effect was partially reduced by BAY 11-7085 pre-treated supernatant. Taken together, our results indicate that KOCN-induced apoptosis in HCT 116 cells is dependent on the releases of TNF-${\alpha}$ and the increased factors and that the mechanism involves the activation of NF-${\kappa}B$.

Effects of Amifostine on Apoptosis, Cell Cycle and Cytoprotection of Human Colon Cancer Cell Lines

  • Eun Ju Lee
    • 대한의생명과학회지
    • /
    • 제29권4호
    • /
    • pp.287-295
    • /
    • 2023
  • Amifostine was developed to protect cells, but it is known to induce cytotoxicity and apoptosis, and the exact mechanism is unknown. In this study, we investigated how the DNA mismatch repair (MMR) system interacts with p53 to prevent apoptosis, cell cycle arrest, and cytoprotective effects induced by amifostine. HCT116 colon cancer cells sublines HCT116/p53+,HCT116/p53+, HCT116/p53-, HCT116/E6 and HCT116+ch3/E6 cells were used for evaluation. Amifostine induced G1 arrest and increased toxicity two-fold in p53- cells regardless of MMR expression. Both G1 cell cycle arrest and induction of p53 protein peaked at 24 h after the start of amifostine exposure. Both G1 cell cycle arrest and induction of p53 protein peaked at 24 h after the start of amifostine exposure. Amifostine induced the expression of p21 protein in both p53+ and p53- cells. As for apoptosis, compared to p53- cells, p53+ cells showed 3.5~4.2 times resistance to amifostine-induced apoptosis. HCT116+E6 with both p53 and MMR loss showed maximum apoptosis at 48 h, and HCT116+ch3/E6HCT116+ch3/E6 with p53 loss showed maximum apoptosis at 24 h. As a result, it was confirmed through in vitro experiments that amifostine-induced G1 cell cycle arrest and apoptosis are mediated through a pathway dependent on MMR and p53 protein.

댕댕이나무의 대장암세포에 대한 항암활성 (Anti-Cancer Activity of Lonicera Caerulea Against Human Colorectal Cancer Cells)

  • 정진부
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2020년도 춘계학술대회
    • /
    • pp.89-89
    • /
    • 2020
  • In this study, we evaluated the effect of the extracts from Lonicera caerulea leaves (LCLE), branches (LCBE) and fruits (LCFE) on the cell growth and migration in human colorectal cancer cells, HCT116 and SW480 cells. LCLE and LCBE dose- and time-dependently inhibited the proliferation of HCT116 and SW480 cells. However, LCFE did not affect the proliferation of HCT116 and SW480 cells. In addition, LCLE and LCBE dramatically cell migration and wound healing in HCT116 cells. LCLE and LCBE decreased β-catenin protein level but not mRNA level in HCT116 and SW480 cells. Furthermore, LCLE decreased TCF4 level in both protein and mRNA level in HCT116 and SW480 cells. However, LCBE decreased TCF4 protein level but not mRNA level in HCT116 and SW480 cells. Based on these findings, LCLE and LCBE may inhibit the cell proliferation and migration through blocking Wnt signaling activation in human colorectal cancer cells. Therefore, LCLE and LCBE may be a potential candidate for the development of chemopreventive or therapeutic agents for human colorectal cancer.

  • PDF

The Extract of Pseudomonas aeruginosa Induces the Apoptosis of the Human Colorectal Cancer Cell Line, HCT 116 Cells, via Mitochondrial Pathway

  • Yang, Eun-Ju;Chang, Jeong-Hyun
    • 대한의생명과학회지
    • /
    • 제18권1호
    • /
    • pp.16-21
    • /
    • 2012
  • Although there are many potential cytotoxic molecules released from bacteria, the role of these molecules on the apoptosis of various cancer cells is not well understood. Pseudomonas aeruginosa (P. aeruginosa) is a Gram-negative, aerobic and rod-shaped bacterium, and has a number of virulence factors. To understand the cytotoxic effect of bacterial extracts on the colorectal cancer cell line, HCT 116 cells, we examined alteration of the cell viability, proliferation, cell cycle and apoptosis of HCT 116 cells after treatment with extract of P. aeruginosa (PaE). These cytotoxicity of PaE occurred in a time- and a dose-dependent manners. In addition, PaE arrested the cell cycle of HCT 116 cell in a time-dependent manner. PaE inhibited the protein levels of Bcl-2 and induced the release of cytochrome c from mitochondria of HCT 116 cells. The decrease of procaspase-3 was induced by the treatment of PaE. These results indicate that PaE has a cytotoxicity in HCT 116 cells via the induction of apoptosis associated with mitochondrial pathway. Therefore, PaE may used as the potential target for the treatment of colorectal cancer.

댕댕이나무(Lonicera caerulea)의 대장암세포 생육억제 활성 (Inhibitory Activity of Lonicera caerulea Against Cell Proliferation in Human Colorectal Cancer Cells)

  • 안미연;어현지;손호준;박광훈;정진부
    • 한국자원식물학회지
    • /
    • 제33권4호
    • /
    • pp.263-270
    • /
    • 2020
  • 이상의 연구 결과로 미루어 볼 때, 댕댕이나무 잎과 가지 추추출물은 대장암 세포주 HCT116과 SW480세포의 생육을 억제하였으나 열매추출물은 억제활성이 나타나지 않았다. 잎과 가지 추출물은 cell migration과 wound healing assay를 통해 비정상적인 세포증식 억제를 확인하였으며, β-catenin과 TCF4의 단백질 수준을 감소시켜 비정상적인 Wnt 신호전달을 억제를 통해 대장암세포의 생육을 억제하는 것으로 판단된다. 따라서 댕댕이나무 잎과 가지는 항암을 위한 대체보완소재 및 천연 항암제 개발을 위한 소재로 활용이 가능할 것으로 판단된다.

17α-Estradiol에 의한 인체 대장암 세포주 HCT116의 에폽토시스에 수반되는 Bak/Bax의 활성화에 미치는 종양억제단백질 p53의 강화효과 (Tumor-suppressor Protein p53 Sensitizes Human Colorectal Carcinoma HCT116 Cells to 17α-estradiol-induced Apoptosis via Augmentation of Bak/Bax Activation)

  • 한초롱;이지영;김동기;김효영;김세진;장석준;김윤희;전도연;김영호
    • 생명과학회지
    • /
    • 제23권10호
    • /
    • pp.1230-1238
    • /
    • 2013
  • $17{\alpha}$-estradiol ($17{\alpha}-E_2$)의 에폽토시스 유도활성에 미치는 종양억제단백질 p53의 조절효과를 조사하고자, $17{\alpha}-E_2$에 의해 유도되는 에폽토시스 현상들을 인체 대장암 세포주 유래 클론인 HCT116 ($p53^{+/+}$) 및 HCT116 ($p53^{-/-}$) 세포에서 비교하였다. HCT116 ($p53^{+/+}$) 및 HCT116 ($p53^{-/-}$) 세포를 $17{\alpha}-E_2$ ($2.5{\sim}10{\mu}M$)로 처리하거나 혹은 HCT116 ($p53^{+/+}$) 및 HCT116 ($p53^{-/-}$) 세포를 $10{\mu}M$ $17{\alpha}-E_2$로 시간 별로 처리한 결과, HCT116 ($p53^{+/+}$)에 있어서는 세포독성과 에폽토시스-관련 sub-G1 peak의 비율은 처리농도와 시간에 의존적으로 나타났다. 그러나 HCT116 ($p53^{-/-}$) 세포의 경우는 이러한 현상이 미약하게 나타났다. $17{\alpha}-E_2$에 의해 유도되는 비정상적 유사분열방추사 형성, 중기판 염색체 배열의 미완성, 이에 따른 유사분열정지($G_2/M$ arrest) 등의 현상은 HCT116 ($p53^{+/+}$) 및 HCT116 ($p53^{-/-}$) 세포에서 유사한 수준으로 나타났다. 이에 반해, $17{\alpha}-E_2$에 의해 유도되는 Bak과 Bax의 활성화, 미토콘드리아의 막전위 상실(${\Delta}{\Psi}m$ loss), 그리고 PARP 분해 등의 현상은 HCT116 ($p53^{-/-}$) 세포에 비해 HCT116 ($p53^{+/+}$) 세포에서 훨씬 높은 수준으로 확인되었다. 아울러 $17{\alpha}-E_2$로 처리된 HCT116 ($p53^{+/+}$) 세포에서 확인되는 p53 (Ser-15)의 인산화 및 p53 수준의 증가와 일치하여, 세포 내의 p21및 Bax 수준도 현저히 증가하였다. 이때 $17{\alpha}-E_2$로 처리된 HCT116 ($p53^{-/-}$) 세포에서는 p21 및 Bax의 발현수준이 매우 낮았다. 한편, 에폽토시스 억제단백질인 Bcl-2 단백질 수준은 HCT116 ($p53^{-/-}$) 세포에 비해 HCT116 ($p53^{+/+}$) 세포에서 다소 낮았으나, 이러한 Bcl-2 단백질 수준은 $17{\alpha}-E_2$ 처리 후에도 크게 변화하지 않는 것으로 나타났다. 이러한 결과들은 $17{\alpha}-E_2$ 처리에 의해 유도되는 에폽토시스 유도 경로의 구성원들의 변화, 즉 비정상적 유사분열방추사 형성 및 이에 따른 유사분열정지($G_2/M$ arrest), 뒤이은 Bak 및 Bax의 활성화, 미토콘드리아의 막전위 상실, 그리고 이에 수반되는 caspase cascade 활성화 및 PARP 분해로 진행되는 에폽토시스 현상들 중에서, Bak 및 Bax의 활성화 단계가 종양억제단백질 p53의 에폽토시스 증진 활성에 의해 양성적으로 조절되는 작용 타켓임을 보여준다.

Potassium Cyanate Induces Apoptosis of Human Colorectal Cancer Cell via Mitochondrial Pathway

  • Yang, Eun-Ju;Chang, Jeong-Hyun
    • 대한의생명과학회지
    • /
    • 제17권3호
    • /
    • pp.177-184
    • /
    • 2011
  • Potassium cyanate (KOCN) is an inorganic compound and induces the carbamylation of proteins with cytotoxic effects on human cells. Although there is a potential cytotoxic molecule, the role of KOCN on the apoptosis of cancer cell is not well understood. The present study investigated the effects of KOCN on the human colorectal cancer cell line, HCT 116 cells. To understand the anti-cancer effect of KOCN on HCT 116 cells, we examined alteration of apoptosis, the intracellular $Ca^{2+}$ concentration, the intracellular signaling pathway and generation of reactive oxygen species (ROS) in these cells treated with KOCN. The apoptosis of HCT 116 cells was induced by KOCN in a dose-dependent manner at 24 hours and 48 hours, respectively. The apoptosis was processed via the cleavage of poly ADP-ribose polymerase (PARP) and activation of caspase 3 in HCT 116 cells. KOCN induced the elevation of intracellular $Ca^{2+}$ concentration and changed the expressions of Bcl-2 family proteins. The pro-apoptotic Bax was continuously up-regulated, and the anti-apoptotic Bcl-2 was down-regulated by KOCN. KOCN also induced the hyperpolarization of mitochondria and the generation of ROS in HCT 116 cells. Taken together, these results indicate that KOCN induces the apoptosis of HCT 116 cells by disruption of $Ca^{2+}$ homeostasis and via mitochondrial pathway. This study provides the compound that may be used as a potent agent for the treatment of colorectal cancer.

백두옹탕(白頭翁湯)의 대장암 세포주 HCT-116 항암효과와 세포자멸사에 관한 연구 (Studies on the Anti-cancer Effect and the Mechanism of Apoptosis by Baekduong-tang in Human Colon Cancer Cell Line HCT-116)

  • 김종욱;문구;박찬희;이정한;지혜민
    • 대한한방내과학회지
    • /
    • 제31권2호
    • /
    • pp.273-289
    • /
    • 2010
  • Objectives : To investigate the anti-cancer effect of Baekduong-tang(BDOT) against cancer cells, the signaling pathway of apoptosis was explored in human colon cancer cells. Materials and Methods : Human colon cancer cell lines, including HT-29 and HCT-116 cells, were used. Cell viability was measured by MTT assay. Apoptosis was determined by DAPI nuclei staining and flow cytometry in HCT-116 cells treated with 0.25 mg/$m{\ell}$ Baekduong-tang for 48 hrs. Results : Baekduong-tang induced the apoptosis of p53 positive HCT-116 cells with G2/M phase arrest. Treatment with Baekduong-tang led to increased expression and phosphorylation of p53 and decreased expression of CDK2 and CDK6 in HCT-116 cells. It also activated caspase-3 through caspase-10 and caspase-9 activation. Finally, Baekduong-tang induced production $H_2O_2$, superoxide anion ($O_2^-$) and NO and modulated proteins expression including SOD, NOS, Bax and Bcl-2. Conclusions : These results indicate Baekduong-tang induces apoptotic death of HCT-116 cells through G2/M phase arrest and disturbance of intracellular redox status in a p53-dependent manner.

Ginsenoside Rh2 inhibiting HCT116 colon cancer cell proliferation through blocking PDZ-binding kinase/T-LAK cell-originated protein kinase

  • Yang, Jianjun;Yuan, Donghong;Xing, Tongchao;Su, Hongli;Zhang, Shengjun;Wen, Jiansheng;Bai, Qiqiang;Dang, Dongmei
    • Journal of Ginseng Research
    • /
    • 제40권4호
    • /
    • pp.400-408
    • /
    • 2016
  • Background: Ginsenoside Rh2 (GRh2) is the main bioactive component in American ginseng, a commonly used herb, and its antitumor activity had been studied in previous studies. PDZ-binding kinase/T-LAK cell-originated protein kinase (PBK/TOPK), a serine/threonine protein kinase, is highly expressed in HCT116 colorectal cancer cells. Methods: We examined the effect of GRh2 on HCT116 cells ex vivo. Next, we performed in vitro binding assay and in vitro kinase assay to search for the target of GRh2. Furthermore, we elucidated the underlying molecular mechanisms for the antitumor effect of GRh2 ex vivo and in vivo. Results: The results of our in vitro studies indicated that GRh2 can directly bind with PBK/TOPK and GRh2 also can directly inhibit PBK/TOPK activity. Ex vivo studies showed that GRh2 significantly induced cell death in HCT116 colorectal cancer cells. Further mechanistic study demonstrated that these compounds inhibited the phosphorylation levels of the extracellular regulated protein kinases 1/2 (ERK1/2) and (H3) in HCT116 colorectal cancer cells. In vivo studies showed GRh2 inhibited the growth of xenograft tumors of HCT116 cells and inhibited the phosphorylation levels of the extracellular regulated protein kinases 1/2 and histone H3. Conclusion: The results indicate that GRh2 exerts promising antitumor effect that is specific to human HCT116 colorectal cancer cells through inhibiting the activity of PBK/TOPK.