DOI QR코드

DOI QR Code

Effects of Amifostine on Apoptosis, Cell Cycle and Cytoprotection of Human Colon Cancer Cell Lines

  • Eun Ju Lee (Department of Clinical Laboratory Science, Daejeon Health Institute of Technology)
  • Received : 2023.09.25
  • Accepted : 2023.11.09
  • Published : 2023.12.31

Abstract

Amifostine was developed to protect cells, but it is known to induce cytotoxicity and apoptosis, and the exact mechanism is unknown. In this study, we investigated how the DNA mismatch repair (MMR) system interacts with p53 to prevent apoptosis, cell cycle arrest, and cytoprotective effects induced by amifostine. HCT116 colon cancer cells sublines HCT116/p53+,HCT116/p53+, HCT116/p53-, HCT116/E6 and HCT116+ch3/E6 cells were used for evaluation. Amifostine induced G1 arrest and increased toxicity two-fold in p53- cells regardless of MMR expression. Both G1 cell cycle arrest and induction of p53 protein peaked at 24 h after the start of amifostine exposure. Both G1 cell cycle arrest and induction of p53 protein peaked at 24 h after the start of amifostine exposure. Amifostine induced the expression of p21 protein in both p53+ and p53- cells. As for apoptosis, compared to p53- cells, p53+ cells showed 3.5~4.2 times resistance to amifostine-induced apoptosis. HCT116+E6 with both p53 and MMR loss showed maximum apoptosis at 48 h, and HCT116+ch3/E6HCT116+ch3/E6 with p53 loss showed maximum apoptosis at 24 h. As a result, it was confirmed through in vitro experiments that amifostine-induced G1 cell cycle arrest and apoptosis are mediated through a pathway dependent on MMR and p53 protein.

Keywords

Acknowledgement

This paper was supported by Daejeon Health Institute of Technology in 2023.

References

  1. Bhattacharyya NP, Skandalis A, Ganesh A, et al. Mutator phenotypes in human colorectal carcinoma cell lines. Proc Natl Acad Sci USA. 1994. 91: 6319-6323. https://doi.org/10.1073/pnas.91.14.6319
  2. Boyer JC, Umar A, Risinger JI, et al. Microsatellite instability, mismatch repair deficiency, and genetic defects in human cancer cell lines. Cancer Res. 1995. 55: 6063-6070.
  3. Bunz F, Hwang PM, Torrance C, et al. Disruption of p53 in human cancer cells alters the responses to therapeutic agents. J Clin Invest. 1999. 104: 263-269. https://doi.org/10.1172/JCI6863
  4. Capizzi RL. Clinical status and optimal use of amifostine. Oncology. 1999. 13: 47-59.
  5. Capizzi RL, Oster W. Chemoprotective and radioprotective effects of amifostine: an update of clinical trials. Int J Hematol. 2000. 72: 425-435.
  6. Carder P, Wyllie AH, Purdie CA, et al. Stabilized p53 facilitates aneuploid clonal divergence in colorectal cancer. Oncogene. 1993. 8: 1397-1401.
  7. Chakraborty U, Alani E, et al. Understanding how mismatch repair proteins participate in the repair/anti-recombination decision. FEMS Yeast Res. 2016. 16: fow071.
  8. Davis TW, Wilson-Van PC, Meyers M, et al. Defective expression of the DNA mismatch repair protein, MLH1, alters G2-M cell cycle checkpoint arrest following ionizing radiation. Cancer Res. 1998. 58: 767-778.
  9. Falcicchio M, Ward JA, Macip S, et al. Regulation of p53 by the 14-3-3 protein interaction network: new opportunities for drug discovery in cancer. Cell Death Discov. 2020. 6. 126. http://doi.org/10.1038/s41420-020-00362-3.
  10. Feng M, Smith DE, Normolle DP, et al. A phase I clinical and pharmacology study using amifostine as a radioprotector in dose-escalated whole liver radiation therapy. Int J Radiat Oncol Biol Phys. 2012. 83: 1441-1447. http://doi.org/10.1016/j.ijrobp.2011. 10.020.
  11. Fink D, Nebel S, Norris PA, et al. The effect of different chemotherapeutic agents on the enrichment of DNA mismatch repair-deficient tumor cells. Br J Cancer. 1998. 77: 703-708. https://doi.org/10.1038/bjc.1998.116
  12. Fishel R, Lescoe MK, Rao MRS, et al. The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell. 1993. 75: 1027-1038. https://doi.org/10.1016/0092-8674(93)90546-3
  13. Fishel R, Kolodner RD. Identification of mismatch repair genes and their role in the development of cancer. Curr Opin Genet Dev. 1995. 5: 382-395. https://doi.org/10.1016/0959-437X(95)80055-7
  14. Hickman MJ, Samson RD. Role of DNA mismatch repair and p53 in signaling induction of apoptosis by alkylating agents. Proc Natl Acad Sci U S A. 1999. 96: 10764-10769. doi: 10.1073/pnas.96.19.10764.
  15. Hollstein M, Sidransky D, Vogelstein B, et al. p53 mutations in human cancers. Science (Washington DC). 1991. 253: 49-53. https://doi.org/10.1126/science.1905840
  16. Jiang M, Jia K, Wang L, et al. Alterations of DNA damage response pathway: Biomarker and therapeutic strategy for cancer immunotherapy. Acta Pharmaceutica Sinica B. 2021. 11: 2983-2994. https://doi.org/10.1016/j.apsb.2021.01.003
  17. Jin P, Wang D, Lyu C, et al. Mismatch Repair Protein hMLH1, but not hMSH2, Enhances Estrogen-Induced Apoptosis of Colon Cancer Cells. Journal of Cancer. 2017. 8: 3232-3241. doi: 10.7150/jca.20833
  18. John RK, Vassilis EK, Lampros JV. Amifostine: The First Selective-Target and Broad-Spectrum Radioprotector. The Oncologist. 2007. 12: 738-747. https://doi.org/10.1634/theoncologist.12-6-738
  19. Kat A, Thilly WG, Fang WH, et al. An alkylation-toleration, mutator human cell line is deficient in strand-specific mismatch repair. Proc Natl Acad Sci USA. 1993. 90: 6424-6428. doi: 10.1073/pnas.90.14.6424.
  20. Koi M, Umar A, Chauhan DP, Cherian SP, et al. Human chromosome 3 corrects mismatch repair deficiency and microsatellite instability and reduces N-methyl-N'-nitro-N-nitrosoguanidine tolerance in colon tumour cells with homozygous hMLH1 mutation. Cancer Res. 1994. 54: 4308-4312.
  21. Lee EJ, Gerhold M, Palmer MW, et al. p53 protein regulates the effects of amifostine on apoptosis, cell cycle progression, and cytoprotection. British J Cancer. 2003. 88: 754-759. https://doi.org/10.1038/sj.bjc.6600779
  22. Lin X, Ramamurthi K, Mishima M, et al. p53 Modulates the Effect of Loss of DNA Mismatch Repair on the Sensitivity of Human Colon Cancer Cells to the Cytotoxic and Mutagenic Effects of Cisplatin Cancer Res. 2001. 61: 1508-1516.
  23. Li P, Liu X, Zhao T, et al. Comparable radiation sensitivity in p53 wild-type and p53 deficient tumor cells associated with different cell death modalities. Cell Death Discov. 2021. 20: 184. http://doi.org/10.1038/s41420-021-00570-5.
  24. Lord CJ, Ashworth A. The DNA damage response and cancer therapy. Nature. 2012. 481: 287-294. doi: 10.1038/nature10760.
  25. McGahon AJ, Martin SM, Sissonnette RP, et al. The end ot the cell line: Methods for the study of apoptosis. In Cell Death. 1995. 46: 153-174. http://doi.org/10.1016/s0091-679x(08)61929-9.
  26. Munakata S, Ito T, Asano T, et al. Tumor-Infiltrating CD8-Positive T-Cells Associated with MMR and p53 Protein Expression Can Stratify Endometrial Carcinoma for Prognosis. Diagnostics 2023. 13: 1985. https://doi.org/10.3390/diagnostics13121985
  27. Papadopoulos N, Nicolaides NC, Wei YF. Mutation of a mutL homolog in hereditary colon cancer. Science (Washington DC). 1994. 263: 1625-1629. https://doi.org/10.1126/science.8128251
  28. Parsons R, Li GM, Longley MJ, et al. Hypermutability and mismatch repair deficiency in RER+ tumor cells. Cell. 1993. 75: 1227-1236. https://doi.org/10.1016/0092-8674(93)90331-J
  29. Roser C, Toth C, Renner M, et al. Expression of apoptosis repressor with caspase recruitment domain (ARC) in familial adenomatous polyposis (FAP) adenomas and its correlation with DNA mismatch repair proteins, p53, Bcl-2, COX-2 and beta-catenin. Cell Commun Signal. 2021. 19: 15. doi: 10.1186/s12964-020-00702-x.
  30. Salem ME, Bodor JN, Puccini A, et al. Relationship between MLH1, PMS2, MSH2 and MSH6 genespecific alterations and tumor mutational burden in 1057 microsatellite instability-high solid tumors. Int J Cancer. 2020. 147: 2948-2956. doi: 10.1002/ijc.33115
  31. Shapiro GI, Harper JW. Anticancer drug targets: cell cycle and checkpoint control. J Clin Invest. 1999. 104: 1645-1653. http://doi.org/10.1172/JCI9054.
  32. Shaw LM, Glover D, Turrisi A, et al. Pharmacokinetics of WR-2721. Pharmacol Ther. 1988. 39: 195-201. http://doi.org/10.1016/0163-7258(88)90061-7.
  33. Shen H, Chen ZJ, Zilfou JT, et al. Binding of the aminothiol WR-1065 to transcription factors influences cellular response to anticancer drugs. J Pharmacol Exp Ther. 2001. 297: 1067-1073.
  34. Smits VA, Klompmaker R, Vallenius T, et al. p21 inhibits Thr161 phosphorylation of Cdc2 to enforce the G2 DNA damage checkpoint. J Biol Chem. 2000. 275: 30638-30643. http://doi.org/10.1074/jbc.M005437200.
  35. Strobeck MW, Reisman DN, Gunawardena RW, et al. Compensation of BRG-1 function by Brm: Insight into the role of the core SWI/SNF subunits in RB-signaling. J Biol Chem. 2001. 21: 21. http://doi.org/10.1074/jbc.M109532200. Epub 2001 Nov 21.
  36. Sunitha Y, Mats L. Potential Role of MLH1 in the Induction of p53 and Apoptosis by Blocking Transcription on Damaged DNA Templates. Mol Cancer Res. 2003. 1: 747-754.
  37. Taylor CW, Wang LM, List AF, et al. Amifostine protects normal tissues from paclitaxel toxicity while cytotoxicity against tumour cells is maintained. Eur J Cancer. 1997. 33: 1693-1698. http://doi.org/10.1016/s0959-8049(97)00221-9.