• 제목/요약/키워드: HCT 116 cells

검색결과 221건 처리시간 0.021초

Ganoderma Lucidum Polysaccharides Target a Fas/Caspase Dependent Pathway to Induce Apoptosis in Human Colon Cancer Cells

  • Liang, Zengenni;Guo, Yu-Tong;Yi, You-Jin;Wang, Ren-Cai;Hu, Qiu-Long;Xiong, Xing-Yao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권9호
    • /
    • pp.3981-3986
    • /
    • 2014
  • Ganoderma lucidum polysaccharides (GLP) extracted from Ganoderma lucidum have been shown to induce cell death in some kinds of cancer cells. This study investigated the cytotoxic and apoptotic effect of GLP on HCT-116 human colon cancer cells and the molecular mechanisms involved. Cell proliferation, cell migration, lactate dehydrogenase (LDH) levels and intracellular free calcium levels ($[Ca^{2+}]i$) were determined by MTT, wound-healing, LDH release and fluorescence assays, respectively. Cell apoptosis was observed by scanning and transmission electron microscopy. For the mechanism studies, caspase-8 activation, and Fas and caspase-3 expression were evaluated. Treatment of HCT-116 cells with various concentrations of GLP (0.625-5 mg/mL) resulted in a significant decrease in cell viability (P< 0.01). This study showed that the antitumor activity of GLP was related to cell migration inhibition, cell morphology changes, intracellular $Ca^{2+}$ elevation and LDH release. Also, increase in the levels of caspase-8 activity was involved in GLP-induced apoptosis. Western blotting indicated that Fas and caspase-3 protein expression was up-regulated after exposure to GLP. This investigation demonstrated for the first time that GLP shows prominent anticancer activities against the HCT-116 human colon cancer cell line through triggering intracellular calcium release and the death receptor pathway.

The C-terminal domain of PLD2 participates in degradation of protein kinase CKII β subunit in human colorectal carcinoma cells

  • Lee, Young-Hoon;Uhm, Jong-Su;Yoon, Soo-Hyun;Kang, Ji-Young;Kim, Eun-Kyung;Kang, Beom-Sik;Min, Do-Sik;Bae, Young-Seuk
    • BMB Reports
    • /
    • 제44권9호
    • /
    • pp.572-577
    • /
    • 2011
  • Elevated phospholipase D (PLD) expression prevents cell cycle arrest and apoptosis. However, the roles of PLD isoforms in cell proliferation and apoptosis are incompletely understood. Here, we investigated the physiological significance of the interaction between PLD2 and protein kinase CKII (CKII) in HCT116 human colorectal carcinoma cells. PLD2 interacted with the CKII${\beta}$ subunit in HCT116 cells. The C-terminal domain (residues 578-933) of PLD2 and the N-terminal domain of CKII${\beta}$ were necessary for interaction between the two proteins. PLD2 relocalized CKII${\beta}$ to the plasma membrane area. Overexpression of PLD2 reduced CKII${\beta}$ protein level, whereas knockdown of PLD2 led to an increase in CKII${\beta}$ expression. PLD2-induced CKII${\beta}$ reduction was mediated by ubiquitin-dependent degradation. The C-terminal domain of PLD2 was sufficient for CKII${\beta}$ degradation as the catalytic activity of PLD2 was not required. Taken together, the results indicate that the C-terminal domain of PLD2 can regulate CKII by accelerating CKII${\beta}$ degradation in HCT116 cells.

Mechanism of Action of Nigella sativa on Human Colon Cancer Cells: the Suppression of AP-1 and NF-κB Transcription Factors and the Induction of Cytoprotective Genes

  • Elkady, Ayman I;Hussein, Rania A;El-Assouli, Sufian M
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권17호
    • /
    • pp.7943-7957
    • /
    • 2015
  • Background and Aims: Colorectal cancer is one of the leading causes of death in the world. The aim of this study was to investigate the growth-suppression potentiality of a crude saponin extract (CSENS) prepared from medicinal herb, Nigella sativa, on human colon cancer cells, HCT116. Materials and Methods: HCT116 cells were subjected to increasing doses of CSENS for 24, 48 and 72 h, and then harvested and assayed for cell viability by WST-1. Flow cytometry analyses, cell death detection ELISA, fluorescent stains (Hoechst 33342 and acridine orange/ethidium bromide), DNA laddering and comet assays were carried out to confirm the apoptogenic effects of CSENS. Luciferase reporter gene assays, quantitative reverse transcription-polymerase chain reaction and Western blot analyses were performed to assess the impact of CAERS and CFEZO on the expression levels of key regulatory proteins in HCT116 cells. Results: The results demonstrated that CSENS inhibited proliferation and induced apoptosis. Apoptosis was confirmed by flow cytometry analyses, while CSENS-treated cells exhibited morphological hallmarks of apoptosis including cell shrinkage, irregularity in cellular shape, cellular detachment and chromatin condensation. Biochemical signs of apoptosis, such as DNA degradation, were observed by comet assay and gel electrophoresis. The pro-apoptotic effect of CSENS was caspase-3-independent and associated with increase of the Bax/Bcl-2 ratio. CSENS treatment down-regulated transcriptional and DNA-binding activities of NF-${\kappa}B$ and AP-1 proteins, associated with down-regulation of their target oncogenes, c-Myc, cyclin D1 and survivin. On the other hand, CSENS up-regulated transcriptional and DNA-binding activities of Nrf2 and expression of cytoprotective genes. In addition, CSENS modulated the expression levels of ERK1/2 MAPK, p53 and p21. Conclusions: These findings suggest that CSENS may be a valuable agent for treatment of colon cancer.

Parecoxib: an Enhancer of Radiation Therapy for Colorectal Cancer

  • Xiong, Wei;Li, Wen-Hui;Jiang, Yong-Xin;Liu, Shan;Ai, Yi-Qin;Liu, Rong;Chang, Li;Zhang, Ming;Wang, Xiao-Li;Bai, Han;Wang, Hong;Zheng, Rui;Tan, Jing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권2호
    • /
    • pp.627-633
    • /
    • 2015
  • Background: To study the effect of parecoxib, a novel cyclooxygenase-2 selective inhibitor, on the radiation response of colorectal cancer (CRC) cells and its underlying mechanisms. Materials and Methods: Both in vitro colony formation and apoptosis assays as well as in vivo mouse xenograft experiments were used to explore the radiosensitizing effects of parecoxib in human HCT116 and HT29 CRC cells. Results: Parecoxib sensitized CRC cells to radiation in vitro with a sensitivity enhancement ratio of 1.32 for HCT116 cells and 1.15 for HT29 cells at a surviving fraction of 0.37. This effect was partially attributable to enhanced apoptosis induction by parecoxib combined with radiation, as illustrated using an in vitro apoptosis assays. Parecoxib augmented the tumor response of HCT116 xenografts to radiation, achieving growth delay more than 20 days and an enhancement factor of 1.53. In accordance with the in vitro results, parecoxib combined with radiation resulted in less proliferation and more apoptosis in tumors than radiation alone. Radiation monotherapy decreased microvessel density (MVD) and microvessel intensity (MVI), but increased the hypoxia level in xenografts. Parecoxib did not affect MVD, but it increased MVI and attenuated hypoxia. Conclusions: Parecoxib can effectively enhance radiation sensitivity in CRC cells through direct effects on tumor cells and indirect effects on tumor vasculature.

β-Sitosterol에 의한 인체 대장암 HCT116 세포의 증식억제에 관한 연구 (β-Sitosterol Induced Growth Inhibition is Associated with Up-regulation of Cdk Inhibitor p21WAF1/CIP1 in Human Colon Cancer Cells)

  • 최영현;김영애;박철;최병태;이원호;황경미;정근옥;박건영
    • 한국식품영양과학회지
    • /
    • 제33권1호
    • /
    • pp.1-6
    • /
    • 2004
  • $\beta$-Sitosterol은 과일과 야채 등을 포함한 대부분의 고등식물에 존재하는 중요한 phytosterol의 하나로서, 인체 암의 예방과 치료에 매우 유효한 것으로 보고되어져 오고 있다. 본 연구에서는 $\beta$-sitosterol의 암세포 증식억제 기전의 해석을 시도하기 위하여 인체 대장암세포 HCT116의 증식에 미치는 $\beta$-sitosterol의 영향을 조사하였다. $\beta$-Sitosterol의 처리로 HCT116 암세포의 증식은 처리 농도 의존적으로 감소되었으며, 특히 7.5 $\mu$M 이상 처리에서는 급격한 성장억제 효과가 있었다. 또한 5.0 $\mu$M 처리군에서부터 apoptotic body의 형성이 관찰되었고, $\beta$-catenin 단백질의 분해 현상과 연관성이 있었다. 그리고 $\beta$-sitosterol이 처리된 암세포에서는 종양억제유전자 p53 및 Cdk inhibitor p21의 발현이 전사 및 번역 수준에서 모두 증가되었다. 본 결과는 그동안 연구가 거의 진행되어져 있지 않았던 $\beta$-sitosterol에 의한 암세포주기 조절 해석을 위한 주요한 자료로 활용될 것이다.

Pristimerin, a Naturally Occurring Triterpenoid, Exerts Potent Anticancer Effect in Colon Cancer Cells

  • Seo, Hee Won;Park, Ju-Hyung;Lee, Ji Yeon;Park, Hyun-Ju;Kim, Jin-Kyung
    • 대한의생명과학회지
    • /
    • 제24권1호
    • /
    • pp.15-22
    • /
    • 2018
  • Pristimerin is a triterpene compound isolated from plant extracts that reportedly possesses antitumor, antioxidant, and anti-inflammatory activities. The current study was designed to evaluate the antitumor effects of pristimerin on human colon cancer cells. Treatment of the human colon cancer cells, HCT116 and SW480, with pristimerin led to a dose-dependent decrease in cell proliferation. Flow cytometry experiments showed that pristimerin increased cell apoptotic rate and decreased the mitochondrial membrane potential in HCT116 and SW480 cells. Western blot assay showed that pristimerin induced increased cleavage of caspase-3, -7, -8, and poly ADP ribose polymerase. Treatment with pristimerin also caused a marked decrease in the expression of Bcl-2 and Bcl-xL. Additionally, the levels of phosphorylated AKT and forkhead box O3a (FOXO3a) were decreased in pristimerin-treated colon cancer cells. Taken together, our study illustrated that pristimerin promoted apoptosis via the AKT/FOXO3a signaling pathway in colon cancer cells, elucidating that it might be considered as a potential agent for colon cancer therapy.

감태나무(Lindera glauca Blume) 에탄올 추출물의 항산화 및 인체 대장암세포 증식 억제 효과에 대한 연구 (Antioxidative and Antiproliferative Effects of Lindera glauca Blume on Human Colorectal Cancer Cells)

  • 김예언;윤정미
    • 한국식품영양과학회지
    • /
    • 제44권4호
    • /
    • pp.635-640
    • /
    • 2015
  • 본 연구에서는 감태나무 추출물의 항산화 활성을 측정하기 위하여 총 폴리페놀 함량, DPPH 라디칼 소거능, 아질산염 소거능, 환원력 방법을 사용하였으며 HT-29와 HCT116 암세포를 이용하여 세포 증식 억제 효과를 측정하였다. 그 결과 본 연구에서 사용된 식물 중 감태나무 뿌리와 감태나무 줄기가 가장 높은 총 폴리페놀 함량을 보였으며 또한 DPPH 라디칼 소거능, 아질산염 소거 활성, 환원력도 가장 높게 나타났다. 암세포 증식 억제 효능평가에서도 감태나무 줄기와 뿌리는 대장암세포 HT-29, HCT116 세포주의 증식 억제에 대한 높은 활성을 나타냈다. 이러한 연구 결과는 감태나무의 기능성 소재로써의 기초적 데이터베이스로 활용할 수 있을 것으로 생각되며, 앞으로 더욱 더 감태나무의 질병에 대한 효능 및 기전연구가 지속되어야 할 것으로 생각된다.

MiR-1297 Regulates the Growth, Migration and Invasion of Colorectal Cancer Cells by Targeting Cyclo-oxygenase-2

  • Chen, Pu;Wang, Bei-Li;Pan, Bai-Shen;Guo, Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권21호
    • /
    • pp.9185-9190
    • /
    • 2014
  • Cyclo-oxygenase-2(Cox-2), a key regulator of inflammation-producing prostaglandins, promotes cell proliferation and growth. Therefore, a better understanding of the regulatory mechanisms of Cox-2 could lead to novel targeted cancer therapies. MicroRNAs are strongly implicated in colorectal cancer but their specific roles and functions have yet to be fully elucidated. MiR-1297 plays an important role in lung adenocarcinoma and laryngeal squamous cell carcinoma, but its significance in colorectal cancer (CRC) has yet to be reported. In our present study, we found miR-1297 to be down regulated in both CRC-derived cell lines and clinical CRC samples, when compared with normal tissues. Furthermore, miR-1297 could inhibit human colorectal cancer LOVO and HCT116 cell proliferation, migration, and invasion in vitro and tumorigenesis in vivo by targeting Cox-2. Moreover, miR-1297 directly binds to the 3'-UTR of Cox-2, and the expression level was drastically decreased in LOVO and HCT116 cells following overexpression of miR-1297. Additionally, Cox-2 expression levels are inversely correlated with miR-1297 expression in human colorectal cancer xenograft tissues. These results imply that miR-1297 has the potential to provide a new approach to colorectal cancer therapy by directly inhibiting Cox-2 expression.

Harmal Extract Induces Apoptosis of HCT116 Human Colon Cancer Cells, Mediated by Inhibition of Nuclear Factor-κB and Activator Protein-1 Signaling Pathways and Induction of Cytoprotective Genes

  • Elkady, Ayman I;Hussein, Rania A;El-Assouli, Sufian M
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권4호
    • /
    • pp.1947-1959
    • /
    • 2016
  • Background: Colorectal cancer (CRC) is a major cause of morbidity and mortality, being the second most common type of cancer worldwide in both men and women. It accounts yearly for approximately 9% of all new cases of cancers. Furthermore, the current chemotherapeutic regimens seem unsatisfactory, so that exploration of novel therapeutic modalities is needed. The present study was undertaken to investigate the inhibitory effects of a crude alkaloid extract (CAERS) of a medicinal herb, Rhazya stricta, on proliferation of CRC HCT116 cells and to elucidate mechanisms of action. To achieve these aims, we utilized MTT, comet, DNA laddering and gene reporter assays, along with Western blot and RT-PCR analyses. Results: We found that CAERS inhibited cell proliferation and induced apoptotic cell death in HCT116 cells. Hallmarks of morphological and biochemical signs of apoptosis were clearly evident. CAERS down-regulated DNA-binding and transcriptional activities of NF-${\kappa}B$ and AP-1 proteins, while up-regulating expression of the Nrf-2 protein. It also down-regulated expression levels of the ERK MAPK, Bcl-2, cyclin D1, CDK-4, survivin and VEGF and up-regulated levels of Bax, caspase-3/7 and -9, p53, p21, Nrf-2. Markedly, it promoted mRNA expression levels of cytoprotective genes including the hemeoxygenase-1, NAD(P)H quinine oxidoreductase 1 and UDP-glucuronyltransferase. Conclusions: These findings indicate that CAERS exerts antiproliferative action on CRC cells through induction of apoptotic mechanisms, and suggest CAERS could be a promising agent for studying and developing novel chemotherapeutic agents aimed at novel molecular targets for the treatment of CRC.

Induction of Apoptosis with Moringa oleifera Fruits in HCT116 Human Colon Cancer Cells Via Intrinsic Pathway

  • Guon, Tae-Eun;Chung, Ha Sook
    • Natural Product Sciences
    • /
    • 제23권4호
    • /
    • pp.227-234
    • /
    • 2017
  • Moringa oleifera Lam (M. oleifera, Moringaceae) is a tree of the Moringaceae family that can reach a height of between 5 and 10 m. The current paper presents cytotoxic effect of M. oleifera fruits and its flavonoids 1 and 2. The viability of HCT116 human colon cancer cells were 38.5% reduced by $150{\mu}g/mL$ of ethanolic extracts in a concentration-dependent manner; in addition, we observed the apoptotic features of cell shrinkage and decreased cell size. Bcl-2 family proteins were regulated as determined by Western blotting analysis, suggesting that M. oleifera fruits and their flavonoids 1 and 2 induced apoptosis through an intrinsic pathway. Based on our findings, 70% ethanolic extracts of M. oleifera fruits and flavonoids 1 and 2 might be useful as cytotoxic agents in colorectal cancer therapy.