• Title/Summary/Keyword: HCL (Highly Conductive Layer)

Search Result 3, Processing Time 0.019 seconds

Interpretation on GDS(Geomagnetic Depth Sounding) Data in and around the Korean Peninsula through the 3-D Sea Effect Modeling

  • Yang, Jun-mo;Kwon, Byung-Doo
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.3
    • /
    • pp.159-169
    • /
    • 2006
  • A GDS (Geomagnetic Depth Sounding) method, one of extremely low-frequency EM methods, has been carried out to examine conductivity anomalies in and around the Korean Peninsula. In this study, new GDS data acquired at the five sites in south-eastern area of the peninsula were incorporated into the previous GDS data. In order to quantitatively interpret observed induction arrows, the 3-D MT modeling considering the surrounding seas of the Korean Peninsula has been performed to evaluate sea effect at each GDS site. The modeling results revealed that the observed real induction arrows were not explained by solely sea effects, consequently two conductive structures that are responsible for the discrepancies between observed and calculated induction arrows were proposed. The first one is the Imjingang Belt, which is thought as an extension of Quiling-Dabie-sulu continental collision belt. The effects of the Imjingang Belt clearly appear at the site YIN and ICHN. The second one is the HCL (Highly Conductive Layer), which is considered as a conductive anomaly by mantle upwelling produced in back-basin region. The effects of the HCL are seen at the site KZU, KMT101, and KMT 107 in the south-eastern region of the Korean Peninsula.

  • PDF

Interpretation on GDS(Geomagnetic Depth Sounding) data in and around Korean peninsula using 3-D MT modeling (3차원 MT 모델링을 통한 한반도 및 주변의 GDS(Geomagnetic Depth Sounding) 자료 해석)

  • Yang, Jun-Mo;Kwon, Byung-Doo;Ryu, Yong-Gyu;Youn, Yong-Hoon
    • 한국지구과학회:학술대회논문집
    • /
    • 2005.09a
    • /
    • pp.124-131
    • /
    • 2005
  • A GDS (Geomagnetic Depth Sounding) method, one of extremely low-frequency EM methods, has been carried out to examine deep geo-electrical structures of the Korean peninsula. In this study, five additive GDS sites acquired in south-eastern area of the Korea were integrated into twelve previous GDS results. In addition, 3-D MT modeling considering the surrounding seas of the Korean peninsula was performed to evaluate sea effect at each GDS site quantitatively. As a result, Observed real induction arrows was not explained by solely sea effect, two conductive structures that are able to explain differences between observed and calculated induction arrows, was suggested. The first conductive structure is the Imjingang Belt, which is thought as a extension of Quiling-Dabie-sulu continental collision belt. The effects of the Imjingang Belt clearly appear at YIN and ICHN sites. The second one is the HCL (Highly Conductive Layer), which is considered as a conductive anomaly by mantle upwelling generated in back-basin region. The effects of the HCL are also confirmed at KZU, KMT101, 107 sites, in the south-eastern of the Korean peninsula.

  • PDF

Fabrication of Ag Grid Patterned PET Substrates by Thermal Roll-Imprinting for Flexible Organic Solar Cells (가열롤 임프린팅 방법을 이용한 유연 유기태양전지용 Ag 그리드 패턴 PET 기판 제작)

  • Cho, Jung Min;Jo, Jeongdai;Kim, Taeil;Kim, Dong Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.11
    • /
    • pp.993-998
    • /
    • 2014
  • Silver (Ag) grid patterned PET substrates were manufactured by thermal roll-imprinting methods. We coated highly conductive layer (HCL) as a supply electrode on the Ag grid patterned PET in the three kinds of conditions. One was no-HCL without conductive PEDOT:PSS on the Ag grid patterned PET substrate, another was thin-HCL coated with ~50 nm thickness of conductive PEDOT:PSS on the Ag grid PET, and the other was thick-HCL coated with ~95 nm thickness of conductive PEDOT:PSS. These three HCLs in order showed 73.8%, 71.9%, and 64.7% each in transmittance, while indicating $3.84{\Omega}/{\Box}$, $3.29{\Omega}/{\Box}$, and $2.65{\Omega}/{\Box}$ each in sheet resistance. Fabrication of organic solar cells (OSCs) with HCL Ag grid patterned PET substrates showed high power conversion efficiency (PCE) on the thin-HCL device. The thick-HCL device decreased efficiency due to low open circuit voltage ($V_{OC}$). And the Ag grid pattern device without HCL had the lowest energy efficiency caused by quite low short current density ($J_{SC}$).