• Title/Summary/Keyword: HCFC141b

Search Result 12, Processing Time 0.016 seconds

Measurement of Adhesion Strength of Polyurethane Foam to Surface-Treated Carbon Steel and Effect of Water Vapor Absorption (발포 폴리우레탄과 탄소강과의 접착 강도 측정 및 수증기 흡착의 영향)

  • 김장순;조재동;임연수
    • Polymer(Korea)
    • /
    • v.27 no.4
    • /
    • pp.340-348
    • /
    • 2003
  • A previous stud-pull test was modified to measure the bond strength of polyurethane foam to carbon steel substrate. This test was appropriate in that the specimen foamed on Zn phosphated steel (0.95 kN) was broken at higher load than that of smooth galvanizing treated steel (0.38 kN). Among the samples foamed on the substrate atvarious preheating temperatures, the polyurethane foam to the steel held over 60$^{\circ}C$ exhibited very high bond strength. The samples were exposed at water vapor absorption, and, then, their bond strengths were measured. The adhesion was significantly reduced in the samples foamed on the steel at temperatures below 40$^{\circ}C$ and above 70$^{\circ}C$. For the polyurethane foams formulated with two blowing gases, the adhesion was higher by 0.03 kN in the samples with HCFC-l4lb than that with HFC-245fa. When the these samples were exposed at water vapor soaking, the reduction of the bond strength for the HFC-245fa blown sample was negligible due to smaller area fraction of void area filled with gas at interfacial area. Consequently, it was found that adhesion of polyurethane foam to metal substrate was determined by variation of microstructural features with substrate preheating, surface treatment type of blowing agent.

Effects of Organoclay on the Thermal Insulating Properties of Rigid Polyurethane Foams Blown by Environmentally Friendly Blowing Agents

  • Kim, Youn-Hee;Choi, Seok-Jin;Kim, Ji-Mun;Han, Mi-Sun;Kim, Woo-Nyon;Bang, Kyu-Tae
    • Macromolecular Research
    • /
    • v.15 no.7
    • /
    • pp.676-681
    • /
    • 2007
  • A process designed to synthesize rigid polyurethane foam (PUF) with insulative properties via the modulation of PUF cell size via the addition of clay and the application of ultrasound was assessed. The blowing agents utilized in this study include water, cyclopentane, and HFC-365mfc, all of which are known to be environmentally-friendly blowing agents. The rigid PUFs were prepared from polymeric 4,4'-diphenylmethane diisocyanate (PMDI) and polyether polyol with a density of $50kg/m^3$. In addition, rigid PUFs/clay nanocomposites were synthesized with clay modified by PMDI with and without the application of ultrasound. The PUF generated using water as a blowing agent evidenced the highest tensile strength. The tensile strength of the PUF/nanocomposites was higher than that of the neat PUF and the strength was even higher with the application of ultrasound. The cell size of the PUF/clay nanocomposites was less than that of the neat PUF, regardless of the type of blowing agent utilized. It appears that the higher tensile strength and lower cell size of the PUF/clay nanocomposites may be attributable to the uniform dispersion of the clay via ultrasonic agitation. The thermal conductivity of the PUF/clay nanocomposites generated with HCFC-141b evidenced the lowest value when PUF/clay nanocomposites were compared with other blowing agents, including HFC-365mfc, cyclopentane, and water. Ultrasound has also proven effective with regard to the reduction of the thermal conductivity of the PUF/clay nanocomposites with any of the blowing agents employed in this study. It has also been suggested that the uniformly dispersed clay particles in the PUF matrix function as diffusion barriers, which prevent the amelioration of the thermal insulation property.