• 제목/요약/키워드: HCCI engine

검색결과 111건 처리시간 0.018초

좁은 분사각을 갖는 인젝터를 이용한 예혼합 압축착화 엔진의 분사조건에 따른 분무 및 연소특성에 관한 연구 (A Study on the Spray and Combustion Characteristics of a HCCI Engine according to Injection Conditions using a Narrow Angle Injector)

  • 김형민;김영진;류재덕;이기형
    • 한국분무공학회지
    • /
    • 제11권3호
    • /
    • pp.161-167
    • /
    • 2006
  • As the exhaustion of petroleum resources and air pollution problems are getting serious recently, there are growing interests in premixed diesel engines which have the potential of achieving a more homogeneous mixture near TDC compared to conventional diesel engines. Early studies have shown that the fuel injection frequency and spray angle affected the mixture formation and combustion in a HCCI(Homogeneous Charge Compression Ignition) engine. Therefore, the purpose of this study is to investigate the relationship between combustion and mixture formations by injection timing and frequency using a narrow angle injector, NADI (Narrow Angle Direct Injection). In this study, we found that the fuel injection timing and injection frequency affect the mixture formations and then affect combustion in the HCCI engine.

  • PDF

예혼합 압축착화 수소기관의 역화현상에 관한 실험적 연구 (An Experimental Study on Phenomenon of Backfire in H2 HCCI Engine)

  • 이종민;이종구;이광주;이종태
    • 한국수소및신에너지학회논문집
    • /
    • 제26권1호
    • /
    • pp.28-34
    • /
    • 2015
  • HCCI (Homogeneous Charged Compression Ignition) hydrogen engine has relatively narrower operation range caused by backfire occurrence due to the rapid pressure rising by using higher compression ratio and significant reaction velocity. In this study, to grasp of backfire process and characteristic in the HCCI research hydrogen engine, in-cylinder pressure, intake pressure and backfire limit range are analyzed with compression ratio and intake valve open timing, experimentally. As the result, it is observed that knock is occurred just before backfire occurrence in HCCI hydrogen engine but not spark igntion type, this phenomenon is always the same for the above variables. Also backfire limit range are expanded up to 50% for the more retarding intake valve open timing in this operating conditions.

예혼합 압축 착화 엔진용 고압 인젝터의 분무특성과 분사조건 최적화에 관한 기초 연구 (The basic study of spray characteristics and optimal fuel injection for high pressure injector in homogeneous charge compression ignition engine)

  • 류재덕;김형민;이기형;이창식
    • 한국분무공학회지
    • /
    • 제9권1호
    • /
    • pp.30-36
    • /
    • 2004
  • The purpose of this study was to investigate the fuel spray characteristics that made most important at an homogeneous air fuel mixture, in a common rail direct injection type HCCI engine. As a study conducted relation which a back pressure and injection pressure are influenced to air fuel mixture characteristics, we tried to offer date even through we select suitable to a HCCI engine running condition of the fuel injection condition. To accomplish the study, to measure a injection rate of common rail type injector and to visualize and simulate a fuel spray was conducted. From the result of injection rate, a common rail injector was confirmed to appear a initial delay of 0.3msec and a latter period delay of 0.7msec. Therefore, real injection duration was determined by about 0.5msec increasing. From the result of fuel spray, the spray penetration was proportional to 1/4 exponent of atmosphere pressure. An experimental equation was deduced from the spray penetration of spray visualization experiment and the relation of injection duration and penetration was estimated in HCCI engine using an experimental equation.

  • PDF

연료조성에 따른 HCCI 엔진의 냉염 및 열염의 2단연소 특성에 관한 실험적 연구 (An Experimental Study on the Two Stage-Ignition of Cool Flame and Hot Flame in HCCI Engine According to Fuel Composition)

  • 김형민;류재덕;이기형;이창식
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 제26회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.13-19
    • /
    • 2003
  • As the environmental pollution becomes serious global problem, the regulation of emission exhausted from automobiles is strengthen. Therefore, it is very important to know how to reduce the NOx and PM simultaneously in diesel engines, which has lot of merits such as high thermal efficiency, low fuel consumption and durability. By this reason, the new concept called as Homogeneous Charge Compression Ignition(HCCI) engines are spotlighted because this concept reduced NOx and P.M. simultaneously. However, it is well known that HCCI engines increased HC and CO. Thus, the investigation of combustion characteristics which consists cool and hot flames for HCCI engines were needed to obtain the optimal combustion condition. In this study, combustion characteristics for direct inject type HCCI engine such as quantity of cool flame and hot flame, ignition timing and ignition delay were investigated to clarify the effects of these parameters on performance. The results revealed that diesel combustion showed the two-stage ignition of cool flame and hot flame, the rate of cool flame increase and hot flame decrease with increasing intake air temperature. On the other hand, the gasoline combustion is the single-stage ignition and ignition timing is near the TDC. In addition mixed fuel combustion showed different phenomenon, which depends on the ratio of gasoline component. Ignition timing of mixed fuel is retarded near the TDC and the ignition delay is increased according to ratio of gasoline.

  • PDF

가솔린과 LPG 예혼합 압축 착화 엔진의 노킹 특성 (Knock Characteristic Analysis of Gasoline and LPG Homogeneous Charge Compression Ignition Engine)

  • 염기태;배충식
    • 한국자동차공학회논문집
    • /
    • 제15권3호
    • /
    • pp.54-62
    • /
    • 2007
  • The knock characteristics in an engine were investigated under homogeneous charge compression ignition (HCCI) operation. Liquefied petroleum gas (LPG)and gasoline were used as fuels and injected at the intake port using port fuel injection equipment. Di-methyl ether (DME) was used as an ignition promoter and was injected directly into the cylinder near compression top dead center (TDC). A commercial variable valve timing device was used to control the volumetric efficiency and the amount of internal residual gas. Different intake valve timingsand fuel injection amounts were tested to verify the knock characteristics of the HCCI engine. The ringing intensity (RI) was used to define the intensity of knock according to the operating conditions. The RI of the LPG HCCI engine was lower than that of the gasoline HCCI engine at every experimental condition. The indicated mean effective pressure (IMEP) dropped when the RI was over 0.5 MW/m2and the maximum combustion pressure was over 6.5MPa. There was no significant relationship between RI and fuel type. The RI can be predicted by the crank angle degree (CAD) at 50 CA. Carbon monoxide (CO) and hydrocarbon (HC) emissions were minimized at high RI conditions. The shortest burn duration under low RI was effective in achieving low HC and CO emissions.

농도성층화와 Cooled EGR이 DME HCCI 엔진의 운전영역에 미치는 영향에 관한 수치해석 (An Investigation of Effects of Fuel Stratification and Cooled EGR on DME HCCI Engine's Operating Ranges by Numerical Analysis)

  • 정동원;아마라;임옥택
    • 한국수소및신에너지학회논문집
    • /
    • 제21권2호
    • /
    • pp.129-135
    • /
    • 2010
  • Homogeneous charge compression ignition (HCCI) engines have the potential to provide both diesel-like efficiency and very low emissions of nitrogen oxide (NOx) and particulate matter(PM). However, several technical issues still must be resolved before HCCI can see application. Among these, steep pressure-rise rate which leads to narrow operating range of HCCI engine continues to be a major issue. This work investigates the combination of two methods to mitigate the excessive pressure-rise rates at high power output, namely fuel stratification and Cooled exhaust-gas recirculation (Cooled EGR), after identifying the each effects to pressure-rise rate. When applying the fuel stratification to simulation, total fuelling width of 0.15 at BDC is set as a equivalent ratio difference based on the previous research. In order to simulate the effects of cooled EGR, $CO_2$ mole fraction in pre-mixture is changed ranging from 0 to 30%. DME which has a characteristic of two-stage ignition is used as a fuel.

HCCI 엔진 부실내 소기특성에 대한 이론 및 수치해석적 연구 (THEORETICAL AND NUMERICAL STUDY ON SCAVENGE CHARACTERISTICS IN A SUBCHAMBER OP AN HCCI ENGINE)

  • 서용권;허형석
    • 한국전산유체공학회지
    • /
    • 제10권2호
    • /
    • pp.21-29
    • /
    • 2005
  • In this paper, we present the theoretical and numerical results of scavenge characteristics in a small subchamber of an HCCI(Homogeneous Charge Compression Ignition) engine. Two theoretical models are proposed in prediction of the scavenge time and the efficiency; one is the non-mixing model in which the input gas(CH4) and the existing gas(air) do not mix at all, and the other is the fully-mixed model in which the two gases are assumed to mix completely before ejection. Focus is also given to the effect on the scavenge performance of the size of the chamber outlet.

2단 분사방식을 적용한 부분 예혼합 디젤 압축착화 연소 엔진의 회전속도 및 부하 변화가 배출 가스 및 IMEP특성에 미치는 영향 (The Effects of Engine Speed and Load of the Partial Premixed Diesel Compressed Ignition Engine Applied with the Split Injection Method on Exhaust Gas and IMEP Characteristics)

  • 강정호;이성만;정재우;강우
    • 한국자동차공학회논문집
    • /
    • 제15권1호
    • /
    • pp.162-170
    • /
    • 2007
  • Currently, due to the serious world-wide air pollution by substances emitted from vehicles, emission control is enforced more firmly and it is expected that the regulation requirements for emission will become more severe. Anew concept combustion technology that can reduce the NOx and PM in relation to combustion is urgently required. Due to such social requirement, technologically advanced countries are making efforts to develop an environment-friendly vehicle engine at the nation-wide level in order to respond to the reinforced emission control. As a core combustion technology among new combustion technologies for the next generation engine, the homogeneous charge compression ignition (HCCI) is expanding its application range by adopting multiple combustion mode, catalyst, direct fuel injection and partially premixed combustion. This study used a 2-staged injection method in order to apply the HCCI combustion method without significantly altering engine specifications in the aspect of multiple combustion mode and practicality by referring to the results of studies on the HCCI engine. And it is investigated that the effects of the engine rpm and load(or A/F) to emission characteristics.

디젤 예혼합 압축착화 엔진에서 EGR 및 수소농후가스의 영향 (The Effects of EGR and Hydrogen Enriched Gas on Diesel HCCI Engine)

  • 박철웅;조준호;오승묵
    • 한국자동차공학회논문집
    • /
    • 제19권1호
    • /
    • pp.1-8
    • /
    • 2011
  • In recent years, there has been an interest in early-injection diesel engines as it has the potential of achieving a more homogeneous and leaner mixture close to TDC compared to standard diesel engine. The more homogeneous mixture may result in reduced NOx and soot emissions and higher efficiency in homogeneous charge compression ignition engines. While earlier studies have shown that a reduction in NOx emissions from HCCI engine is possible, there are some significant problems including the control of ignition timing and combustion rate. In order to investigate the effect of EGR and hydrogen enriched gas on combustion characteristics and emissions, an experiments with single cylinder CRDi engine were carried out concerning the formation of various premixed charge, which can achieved by early injection, EGR and hydrogen enriched gas. EGR was not effective to further reduce NOx and PM emissions. It was found that NOx emissions were decreased with an introduction of hydrogen enriched gas and an adequate diesel fuel amount.