• 제목/요약/키워드: HC emissions

검색결과 229건 처리시간 0.025초

인천항 항만시설에서의 대기오염물질 배출량 산정 (Estimation of Air Pollutant Emissions from Port-Related Sources in the Port of Incheon)

  • 한세현;윤종상;김우중;서윤호;정용원
    • 한국대기환경학회지
    • /
    • 제27권4호
    • /
    • pp.460-471
    • /
    • 2011
  • A port has been regarded as a significant contributor to air pollution in the surrounding areas. Port-related air pollutants are released from not only marine vessels, but also various land-side sources at ports, which include cargo handling equipment, vehicles, locomotives, and fugitive dust sources by port activities such as bulk handling and vehicle movements. However, most studies in Korea have only focused on vessel emissions and there is a lack of information on the emissions from other sources at port. In this study, in order to establish the port-related emission inventory and evaluate the relative contribution of these sources to air emissions from the Port of Incheon, the emissions from land-side sources were estimated and the CAPSS (Clean Air Policy Support System) data for vessel emissions were used. In particular, the detailed information and activity data for the cargo handling equipment source were collected and the emission factors and emissions by equipment types were calculated using U.S. EPA methodologies. Total HC, CO, $NO_x$, $PM_{10}$, and $SO_2$ emissions from port-related sources including the vessel in 2007 were calculated as 229 ton/year, 638 ton/year, 4,861 ton/year, 307 ton/year, and 3,995 ton/year, respectively. It was found that the vessel was the largest contributor to air pollutant emissions from the port, the cargo handling equipment was responsible for about from 8% to 13% of HC, CO, and $NO_x$ emissions and the resuspended road dust contributed about 39% for $PM_{10}$ emissions. The results of this study will be used to establish the management and reduction strategies of air pollution in the port.

GDI 엔진에 DCT 적용에 따른 배기 배출물 특성에 미치는 영향 (The Effect of Dual Clutch Transmissions on the Stability Emissions Characteristic in a Gasoline Direct Injection Engine)

  • 김광래;노현구
    • 한국분무공학회지
    • /
    • 제20권3호
    • /
    • pp.156-161
    • /
    • 2015
  • This paper described the effect of dual clutch transmissions on the stability emissions characteristic in a GDI engine at vehicle Inspection and Maintenance(I/M) program. In order to investigate the influence of direct injection gasoline engine with DCT, the experimental apparatus consisted of GDI engine with 4 cylinder, dynamometer and exhaust emissions analyzer. Analyzed emission gas include CO, HC and NOx results that DCT vehicle in the case of NOx, HC in automatic transmission vehicles less than 1/2 level was confirmed to be exhausted. However vehicle specific power increases CO also has increased.

A STUDY ON THE PERFORMANCE AND EMISSIONS CHARACTERISTICS OF SPARK IGNITION ENGINE FUELLED WITH ETHANOL GASOLINE BLENDED FUEL

  • Han, Sung Bin
    • 에너지공학
    • /
    • 제23권2호
    • /
    • pp.170-174
    • /
    • 2014
  • This paper presents the influences of ethanol addition to gasoline on bench test a spark ignition engine performances and emissions characteristics. The use of ethanol gasoline blended fuels decrease the brake power and brake torque, and increases the brake specific fuel consumption (BSFC). Ethanol gasoline blended fuels show lower brake torque and brake power and higher BSFC than gasoline. When ethanol containing oxygen is blended with gasoline, the combustion of the engine becomes better and therefore CO emission is reduced. HC emissions decrease to some extent as ethanol added to gasoline increase, as the percentage of ethanol in the blends increased, NOx emission was decreased under various engine speeds.

수소-예혼합 압축착화 엔진에서 착화제인 DME/diesel이 엔진 연소에 미치는 영향 (Effects of DME/Diesel as an ignition promoter on combustion of hydrogen homogeneous charge compression ignition)

  • 전지연;박현욱;배충식
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2013년도 제46회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.37-40
    • /
    • 2013
  • Hydrogen-dimethy ether (DME) and hydrogen-diesel compression ignition engine combustion were investigated and compared each other in a single cylinder compression ignition engine. Hydrogen and DME were used as low carbon alternative fuels to reduce green house gases and pollutant. Hydrogen was injected at the intake manifold with an injection pressure of 0.5 MPa at fixed injection timing, $-210^{\circ}CA$ aTDC. DME and diesel were injected directly into the cylinder through the common-rail injection system at injection pressure of 30 MPa. DME and diesel inejction timing was varied to find the optimum CI combustion to reduce CO, HC and NOx emissions. When DME was injected early, CO and HC emissions were high while NOx emission was low. Fuel consumption, heat release rate, and exhaust emissions were measured to analyze each combustion characteristics of each ignition promoter. Fuel consumption was decreased when diesel was used as an ignition promoter. This is due to the lower volatility of diesel which created more stratified charge than DME.

  • PDF

운행차 배출가스 정밀검사 결과를 이용한 가솔린 차량에 대한 배출가스 특성 분석 (Analysis of Emission Gas Characteristics for Gasoline Vehicles using the Inspection Results of Car Emission)

  • 노현구
    • 한국분무공학회지
    • /
    • 제23권3호
    • /
    • pp.128-135
    • /
    • 2018
  • In this study, the following conclusions could be obtained from the analysis of emissions contribution rates and features for contaminated emissions by 13,456 gasoline vehicles passed in the vehicle load test (ASM-idle) under the inspection year 2013 to 2017. It was confirmed that the contamination of the CO, HC, NOx by the displacement is reduced on over 3L engine. As a result of comparing the exhaust gas in the low speed idle mode and the AS2525 mode, the exhaust gas in the low speed idle mode was measured high. It is estimated that if ISG function is applied, emissions from idle condition will be reduced. NOx emissions were reduced when the engine power was above 200HP. It has been confirmed that the amount of exhaust emissions are significantly reduced for vehicles manufactured after 2004. As a result of analyzing the exhaust gas according to the season, it is judged that there is a correlation between HC and NOx according to the ambient temperature. The concentration of exhaust emission in vehicles with high accumulated distance increases, which is considered to be the result of aging of the vehicle.

저공해와 고안정성을 위한 신개념의 사이클론 제트 하이브리드 연소기의 연소특성 (The Combustion Characteristics of a New Cyclone Jet Hybrid Combustor for Low Pollutant Emission and High Flame Stability)

  • 정원석;황철홍;이규영;이창언
    • 대한기계학회논문집B
    • /
    • 제28권2호
    • /
    • pp.146-153
    • /
    • 2004
  • A Promising new approach to achieve low pollutant emissions and improvement of flame stability is tested experimentally using a cyclone jet hybrid combustor employing both premixed and diffusion combustion mode. Three kinds of nozzle are tested for mixing enhancement of fuel and air. The LNG (Liquified Natural Gas) is used as a fuel. The combustor is operated by two methods. One is DC (Diffusion Combustion) mode generated swirl flow by air as general swirl combustor, and the other is HC (Hybrid Combustion) mode. The HC mode consists of diffusion jet flame of axial direction and premixed cyclone flame of tangential direction in order to stabilized the diffusion jet flame. The results showed that the flame stability of HC mode is significantly enhanced than that of DC mode through the change of mixing characteristics by modifications of fuel nozzle. In addition, the reductions of CO and NOx emission in HC mode, as compared with that for the DC mode, is large than about 50% in stable region. Also, even using the low calorific fuel as $CO_2$-blended gas, it is identified that the cyclone jet hybrid combustor has the high performance of flame stability.

포트 마스킹과 흡기 밸브 타이밍이 실린더 내부의 싸이클별 HC와 NOx 생성에 미치는 영향 (Cycle-by-Cycle In-cylinder HC & NOx Formation Characteristics with Port Masking in CVVT Engine)

  • 전우주;최관희;명차리;박심수;이경환
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.3108-3113
    • /
    • 2008
  • This paper investigated the behaviors of combustion characteristics at part load condition with various intake charge motions induced by the port masking schemes in the CVVT (Continuously Variable valve Timing) engine. Time resolved in-cylinder and exhaust emissions were measured by the fast response HC and NOx analyzers to examine their formation mechanisms and behavior characteristics. As a result, in-cylinder HC decreased with the advanced intake valve timings but HC at the exhaust port increased due to the worse combustion stabilities. However HC reduction could be achieved by the application of the port maskings with a enhancement of the engine stability. NOx also decreased with early intake timings by internal EGR but increased with the charge motion controls which enhance the combustion behavior.

  • PDF

메탄올/가솔린 혼합연료의 배기가스 분석 연구 (Analysis of Exhaust Gas of Methanol/Gasoline Fuel Mixture)

  • 홍광표;박명호;김성준
    • 산업기술연구
    • /
    • 제17권
    • /
    • pp.339-344
    • /
    • 1997
  • DOHC gasoline engine(4-cylinder in line type, 1600cc) is modified for the experiment to develope an alternative fuel. The modified engine is tested with the various combination of gasoline and methanol. Pollutant emissions of CO and HC are measured at the end of exhaust manifold. The concentration of CO and HC in exhaust gas is greatly reduced with the increase of coolant temperature of engine. HC concentration is reduced until methanol content reaches to thirty percent and then increased with the volumetric percentage of methanol in fuel. On the other hand, the concentration of CO is reduced as the methanol centent is increased up to 20 percent and then it becomes constant even though the methanol content is raised. The effect of engine RPM on the HC and CO exhaust is investigated. HC concentration is reduced as the engine RPM is increased but the typical trends of variation are not found in the measured value of CO concentrations.

  • PDF

여러 가지 운전조건에 따른 가스연료엔진 오존발생량 연구 (The Characteristics of Ozone Formation from a Gaseous Fueled SI Engine with Various Operating Parameters)

  • 김창업;강건용;배충식
    • 한국자동차공학회논문집
    • /
    • 제11권6호
    • /
    • pp.86-92
    • /
    • 2003
  • To analyze the characteristics of ozone formation, measurements of the concentrations of individual exhaust hydrocarbon species have been made under various engine operating parameters in a 2-liter 4-cylinder engine for natural gas and LPG. Tests were performed at constant engine speed, 1800 rpm for two compression ratios of 8.6 and 10.6, with various operating parameters, such as excess air ratio of 1.0~1.6, bmep of 250~800 na and spark timing of BTDC 10~$55^{\circ}$. It was found that the natural gas gave the less ozone formation than LPG in various operating conditions. This was accomplished by reducing the emissions of propylene($C_3H_6$), which has relatively high maximum incremental reactivity factor, and propane($C_3H_8$) that originally has large portion of LPG. In addition, the natural gas show lower values in the specific reactivity and brake specific reactivity. Higher compression ratio of the test engine showed higher non methane HC emissions. However, specific reactivity value decreased since fuel species of HC emissions increase. brake specific reactivity showed almost same values under high bmep, over 500kPa for both fuels. This means that the increase of non methane HC emissions and the decrease of specific reactivity with higher bmep affect each other simultaneously. With advanced spark timing, brake specific reactivity values of LPG were increased while those of natural gas showed almost constant values.

EFFECT OF ENGINE OIL ON EXHAUST EMISSIONS

  • Maxa, D.
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.423-424
    • /
    • 2002
  • Amount of regulated emissions (CO, $NO_x$, HC), and emissions of some groups of organic substances (volatile hydrocarbons, polyaromatics, and aldehydes) were measured in the standard ECE 83 test on spark ignition engine of a passenger car. The influence of the engine oil composition (mineral or fully synthetic) was examined. For both engine oils, exhaust emissions were measured with fresh oil as well as used oil at the end of the oil drain interval. Unleaded petrol and CNG were used as fuels in all experiments performed. The main conclusion made from the tests is that polyaromatics is the only part of th ε exhaust emissions that was influenced with the nature of the engine oil. Effect on the other components of emissions (aldehydes and VOC) was negligible. Emissions of polyaromatics were almost twice higher for fresh mineral as for fresh fully synthetic oil. The amount of polyaromatics in the exhaust emissions increased slightly with mileage for fully synthetic and substantially more for mineral engine oil.

  • PDF