• 제목/요약/키워드: HAZ

검색결과 609건 처리시간 0.023초

니켈도금된 S45C강의 연속파 Nd:YAG 레이저 맞대기 용접 특성 (The Characteristics of Butt Welding Nd:YAG Laser with a Continuous Wave of Nickel Coated S45C Steel)

  • 모양우;신호준;신병헌;유영태
    • 한국공작기계학회논문집
    • /
    • 제16권4호
    • /
    • pp.1-12
    • /
    • 2007
  • S45C steel has been widely used in industrial applications, such as crank shafts, gears, main spindles of machine tools, connecting rods, etc., because of its distinguished mechanical property. In the convention arc welding of S45C plates without heat treatments, it is possible for welding defects to take place, such as a void or a hot-crack, due to a high carbon composition of S45C. Laser welding process is widely used in the industrial field due to its numerous advantages: a small heat affected zone(HAZ), deep penetration, high welding speed, single-pass thick section capability, and small distortion after welding. The objective of this research works is to investigate the influence of the process parameters, such as power of laser and welding speed, on the characteristics of laser welding for the case of nickel coated and nickel uncoated S45C steel. As the result of the experiment, in case of butt welding, nickel coated S45C steel has a uniform formation of welding zone and it was judged that the welding nature was better as inner defects and the quantity of spatter were formed relatively fewer than nickel uncoated S45C steel.

용접잔류응력장에서의 피로균열 성장거동에 관한 연구(I) (A Study on the Fatigue Crack Growth Behavior in Welding Residual Stress Field(I))

  • 최용식;김영진;우흥식
    • 한국안전학회지
    • /
    • 제5권1호
    • /
    • pp.19-29
    • /
    • 1990
  • The objective of this paper is to investigate the effect of residual stresses on the $\Delta$K$\sub$th/ and fatigue crack growth behavior of butt weldments. For this purpose, transverse butt sutmerged arc welding was performed on SM50A steel plate and CT(compact tension) specimens which loading direction is perpendicular to weld bead were selected. Welding residual stresses distribution on the specimen was determined by hole drilling method. The case of crack located parallel to weld bead, the states of as weld and PWHT, $\Delta$K$\sub$th/ of specimens(HAZ, weld zone) was higher than that of the base metal probably because of the compressive residual stresses of crack tip. In low $\Delta$K region, it is estimated that the effects of residual stresses for da/dN are great. In region II, the da/dN of weldments in as weld state was lower than that of the base metal. Though da/dN of Weldments in PWHT state was similar to that of the base metal. The constant of power law, m in two states consisted with the base metal. Therefore , it is estimated that the value of m is not affected by residual stresses. Fatigue crack growth behavior of weldments consisted with the base metal considering the effective stress intensity factor range($\Delta$K$\sub$eff/) included the effect of initial residual stress(Kres). Thus, we can predict the fatigue crack growth behavior of weldment by knowing the distribution of initial residual stress at the crack tip.

  • PDF

A study on the welding conditions that affect thermal deformation and mechanical property of Al 5083 non-ferrous alloy for eco-environmental leisure ships

  • Moon, Byung Young;Kim, Kyu Sun;Lee, Ki Yeol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권10호
    • /
    • pp.1190-1199
    • /
    • 2014
  • As a considerable, experimental approach, an autocarriage type of $CO_2$ welding machine and a MIG(metal inert gas) welding robot in the inert gas atmosphere were utilized in order to realize Al 5083 welding to hull and relevant components of green leisure ships. This study aims at investigating the effect of welding conditions(current, voltage, welding speed, etc.) on thermal deformation that occurs as welding operation and tensile characteristics after welding, by using Al 5083, nonferrous material, applied to manufacturing of eco-environmental leisure ships. With respect to welding condition to minimize the thermal deformation, 150 A and 16 V at the wire-feed rate of 6 mm/sec were acquired in the process of welding Al 5083 through an auto carriage type of $CO_2$ welding feeder. As to tensile characteristics of Al 5083 welding through a MIG welding robot, most of tensile specimens showed the fracture behavior on HAZ(heat affected zone) located at the area joined with weld metal, except for some cases. Especially, for the case of the Al specimen with 5 mm thickness, 284.62 MPa of tensile strength and 11.41 % of elongation were obtained as an actual allowable tensile stress-strain value. Mostly, after acquiring the optimum welding condition, the relevant welding data and technical requirements might be provided for actual welding operation site and welding procedure specification (WPS).

선박재료용 SS400강의 내식성에 대한 용접후 열처리효과에 관한 전기화학적 연구 (II) (An Electrochemical Study on the Effect of Post-Weld Heat Treatment about Corrosion Resistance Property of SS400 Steel for Ship`s Materials)

  • 김성종;김진경;문경만
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권5호
    • /
    • pp.58-68
    • /
    • 2000
  • When SS400 steel was welded with low hydrogen type and ilmennite type welding, the effect of post-weld heat treatment(PWHT) was investigated with parameters such as micro vickers hardness, corrosion potential, polarization behaviors, galvanic current, Al anode generating current and Al anode weight loss etc. Hardness of each parts(HAZ, BM, WM) by PWHT in case of low hydrogen type and ilmennite type welding was lower than that of each parts by As-welded However hardness of WM area in case of low hydrogen type and ilmennite type welding was the highest among those three parts regardless of PWHT, Whereas in case of ilmennite type welding, WM area was the highest potential among these three parts on galvanic potential series with As-welded while BM area was the highest potential among these three parts by PWHT on the contrary. And in case of low hydrogen type welding, galvanic corrosion and micro cell corrosion of welding parts was decreased with PWHT. However, It was increased with PWHT in case of ilmennite type welding. Moreover Al anode generating current and anode weight loss in case of low hydrogen type was decreased by PWHT compared to As-wedled but, which was increased than that of As-welded in case of ilmennite type welding. Therefore, it is suggested that Corrosion resistance property in case of low hydrogen type welding is increased by PWHT. However its property was devreased with PWHT in case of ilmennite type welding.

  • PDF

고장력 강판(SPFC590)의 레이저 용접부 피로거동 평가 (Evaluation of Fatigue Behavior for Laser Welded High Strength Steel Sheets (SPFC590))

  • 허철;권종완;조현덕;최성종;정우영
    • 한국자동차공학회논문집
    • /
    • 제20권5호
    • /
    • pp.53-64
    • /
    • 2012
  • Deep and narrow welds can be produced by laser welding at high welding speeds with a narrow heat-affected zone (HAZ) and little distortion of the workpiece. This study aims to evaluate the usefulness of laser welding at automobile component manufacture. Microstructure observation, hardness test, tensile test and fatigue life test are performed by using the fiber laser welded SPFC590 steel sheets which is used widely in the manufacture of automotive seat frame. Three kinds of specimens are only a SPFC590 steel plate, quasi-butt joint plate and lap joint plate by laser welding. The following results that will be helpful to understand the static strength, fatigue crack initiation and growth mechanism were obtained. (1) The tensile strength of quasi butt joint specimens nearly equal to base metal specimens, but lap joint specimens fractured in shear area of weld metal. (2) The fatigue strength of quasi-butt joint specimen was approximately 8 percent lower than that of the base metal specimens. Furthermore, the lap joint specimens were less than 86 percent of the base metal specimens. (3) The lap joint fatigue specimens fractured at shear area in high level stress amplitude, while fractured at normal area in low level stress amplitude. From these results, the applicability of the laser welding to the automobile component is discussed.

초음파 원용 레이저 가공에서 재료의 열적 물성이 표면상태에 미치는 영향에 관한 연구 (Study on the Effect of Thermal Property of Metals in Ultrasonic-Assisted Laser Machining)

  • 이후승;김건우;박종은;양민양;조성학;박종권
    • 대한기계학회논문집A
    • /
    • 제39권8호
    • /
    • pp.759-763
    • /
    • 2015
  • 레이저 가공 공정은 마스크 없이 전극을 가공할 수 있다는 장점 때문에 우수한 공정들 중의 하나로 제안되고 있다. 본 논문에서는, 서로 다른 열적 물성을 가지는 금속들에 레이저 가공을 수행하였다. 이 금속들은 서로 다른 표면형상, 열영향부, 그리고 재융착층을 나타내었고 이는 열전도도, 끓는점, 그리고 열확산계수에 의존하였다. 또한 재융착층을 제거하기 위하여 초음파 원용 레이저 가공을 적용, 높은 열확산계수를 가지는 재료에서 그 초음파 가진에 의한 표면 품질의 향상을 발견하였다.

SF45와 SM45C의 마찰용접 최적화에 따른 회전굽힘피로 특성 (Rotary Bending Fatigue Characteristics According to Optimal Friction Welding of SF45 to SM45C Steel Bars)

  • 공유식;박영환
    • 대한기계학회논문집A
    • /
    • 제41권3호
    • /
    • pp.219-224
    • /
    • 2017
  • 본 연구는 수송기계 축 등에 이용되는 캠 형상 부분만을 기존의 단조품인 SF45와 축 부분은 일반기계구조용 탄소강재인 SM45C를 직경 20 mm를 이용하여 이종 마찰용접을 수행하였다. 최적조건을 규명하기 위해 인장시험 등 용접품질과의 상관관계를 고찰하였고, 또한 최적조건에서 마찰용접 후 열처리를 시행하여 용접재(As-welded)와 후열처리재(PWHT)에 대한 회전굽힘 피로시험을 시행하였다. 결과적으로 두 이종재가 강한 혼합으로 계면에서도 개재물 및 산화막이 플래시로 토출되어 양호한 접합상태임을 확인하였다. 더욱이 모재(SF45)와 후열처리재의 피로한도 각각 180 MPa, 250 MPa로 나타났다. 이는 후열처리재가 SF45 모재에 비해 약 40 %의 피로수명이 향상되었음을 확인하였다.

원자로 용접부의 국부적 미세조직 변화에 따른 동적탄성계수 측정 (Measurement of Dynamic Elastic Constants of RPV Steel Weld due to Localized Microstructural Variation)

  • 정용무;김주학;홍준화;정현규
    • 비파괴검사학회지
    • /
    • 제20권5호
    • /
    • pp.390-396
    • /
    • 2000
  • 원자로 재료인 SA 508 Class 3 강용접부 및 열영향부 모사 시험편에 대해서 초음파공명분광법으로 동적탄성계수를 측정하였다. 등방성 탄성계수를 가정하여 초기 추정 탄성 계수, $c_{11},\;c_{12}$$c_{44}$로부터 장방형 시편의 공명 주파수를 계산하였으며 계산된 주파수와 초음파공명분광법으로 측정된 주파수를 비교, 반복 수렴 절차를 거쳐 정밀한 탄성계수를 구했다. 열처리 조건의 차이 및 미세 조직의 차이에 따라 영률 및 전단 계수의 차이가 확실하게 나타났다. 미세한 베이나이트 조직에서의 영률 및 전단 계수는 조대한 마르텐사이트 조직보다 높았으며 이러한 경향은 미세 경도 시험 등의 다른 실험 결과와도 일치하였다.

  • PDF

유한요소법을 이용한 캡스턴 드럼의 용접부 온도해석 (Temperature Analysis for Welding Part of Capstan Drum using Finite Element Method)

  • 김옥삼
    • 수산해양기술연구
    • /
    • 제36권4호
    • /
    • pp.322-328
    • /
    • 2000
  • 남해안 연근해에서 조업하는 정치망 어선에 양망작업시 보조기계로 사용되는 캡스턴의 드럼에서 용접부 온도분포 및 구배를 해석한 결과의 주요 사항은 다음과 같다. 1. 용융부 근처는 냉각개시 1초 이내에 950$^{\circ}C$/sec, 10초 이내는 40$^{\circ}C$/see 정도의 급격한 냉각속도가 형성되었다. 2. 열영향부(HAZ)는 용접 후 1초가 경과할 때 370$^{\circ}C$/sec의 가열속도로 온도가 증가한 후, 이 후 25$^{\circ}C$/sec 냉각속도로 온도가 감소한다. 용접종료 10초 후 모재 내부에는 1.64$^{\circ}C$/mm, 40초가 지났을 때는 0.26$^{\circ}C$/mm 정도의 온도구배가 형성되었다. 3. 용접부 근처는 길이 방향을 따라 격심한 온도편차를 보이고 있으나 두께방향으로는 거의 나타나지 않는다. 이 결과는 향후 캡스턴 드럼의 용접부 최적설계시, 탄소성 열응력 및 열변형 거동을 해석하는 연구의 기초자료로 활용될 수 있을 것이다.

  • PDF

극후판 Box Column 코너이음부의 용접잔류응력 및 Groove형상 특성에 관한 연구 (A Study on the Characteristics of Welding Residual Stresses and Groove Sja[e pf Cprmer Joint in Box Column with Ultra Thick Plate)

  • 방한서;안규백;김종명;석한길;장웅성
    • Journal of Welding and Joining
    • /
    • 제17권1호
    • /
    • pp.97-103
    • /
    • 1999
  • Ships, structures on the ocean, bridges, and other structures tend to be large by the development of industry. These ultra thick plate were welded with large heat input, which causes welding stresses, deformation and buckling, so it has to be considered the weld design, safety, reliability. The welded residual stresses were produced and redistributed due to the effect of large heat input. The mechanical phenomenon has not been surely identified yet. In spite of the lack of the study on the box column, there are various types of steel frame such as I type, H type, + type and $\bigcirc$ type, used in high story building. In this study, we performed computer simulation with two dimensional heat conduction and plane deformation thermal elasto-plastic finite element computer program as changing the plate thickness to 100mm, 150mm and groove angle to $60^{\circ}C$, $45^{\circ}C$, $30^{\circ}C$ of corner joint in box column. And then, to identify mechanical phenomenon such as the phenomenon of thermal distribution, welding residual stresses and deformation and to decide optimum groove angle and welding condition. The main conclusion can be summarized as follows: 1) Since the groove angle has became cooling down rapidly due to its smaller value, the temperature slope was steeped somewhat. 2) The tensile stress within the welding direction stresses was somewhat decreased at the weld metal and HAZ, increasing of the groove angle. 3) The local stress concentration of the groove angle $60^{\circ}C$ was appeared smaller than groove angle $30^{\circ}$.

  • PDF