• 제목/요약/키워드: HAWT

검색결과 93건 처리시간 0.024초

풍력단지 건설에 따른 수평축 풍력터빈 후류 영향에 대한 CFD연구 (A CFD Study on the Wake Effect of HAWT for Construction of Wind Farm)

  • 이세욱;조진수;신형기;경남호
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.297-300
    • /
    • 2006
  • Recently the wind farm is constructed all over the world according to the lack of the resources. The spacing between front and rear wind turbines to construct the wind farm. The wake of front wind turbine has a bad effect on the performance of the rear wind turbine. A basic CFD study on the wake effect of HAWT for construction of wind farm was done by the FLUENT. This study shows the wake of front wind turbine and the results of this study will be used to calculate the spacing between front and rear wind turbines

  • PDF

Upwind형 수평축 풍력발전기의 타워 영향에 의한 블레이드 공력 성능 및 하중 변화에 대한 고찰 (Effect of interaction between blade and tower in upwind type HAWT on blade aerodynamic performance and load)

  • 김호건;신형기;박지웅;이수갑
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.261-264
    • /
    • 2006
  • This paper describes the effects to wind turbine blade aerodynamics due to interaction between blade and tower on upwind type HAWT. In order to analyze effects of blade-tower interact ion, the analyst s program WINFAS which is based on VLM(Vortex Lattice Method), Free wake and FVE model is used. In this study, the changes of wind turbine blade aerodynamics caused by blade-tower interact ion are Investigated with various parameters windshear, yaw error, TSR and tower diameter.

  • PDF

Validation of Aero and Aero-Acoustics simulation for HAWT Model through LBM based technology

  • Senthooran, Sivapalan;Kandasamy, Satheesh;Balasubramanian, Ganapathi
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2010년도 춘계학술대회 논문집
    • /
    • pp.340-341
    • /
    • 2010
  • A computational study to capture the flow around a floor mounted greenhouse shaped HAWT model was performed using the commercial software PowerFLOW 4.2b. The simulation kernel of this software is based on the numerical scheme known as the Lattice Boltzmann Method (LBM), combined with an RNG turbulence model. Simulations were performed at 60 and 140 km/h free stream air speeds. Selective results from these computational simulations are presented to show the capability of this numerical approach to predict the aerodynamics and aeroacoustics characteristics of the 3-D flow field around the HAWT model.

  • PDF

다몸체 역학을 이용한 수평축 풍력발전 시스템 모델링 (Horizontal-Axis Wind Turbine System Modeling using Multi-body Dynamics)

  • 민병문;노태수;송승호;최석우
    • 전력전자학회논문지
    • /
    • 제9권1호
    • /
    • pp.1-9
    • /
    • 2004
  • 본 논문에서는 로터 블레이드, 발전기, 로터 블레이드와 발전기에 연결된 고/저속 회전축 및 회전축간의 회전력을 전달하는 기어 시스템 등 다수의 몸체가 서로 상대적인 운동이 가능한 채 연결되어 있는 단일로터 수평축 풍력발전 시스템을 다몸체 시스템으로 간주한 후, 다몸체 역학을 이용한 풍력발전 시스템 모델링 기법을 제안하였다. 이를 기반으로 풍력발전 시스템의 성능 해석을 위한 시뮬레이터를 개발하였다. 그리고 다양한 시뮬레이션을 통해 제안된 풍력발전 시스템 모델링 기법과 시뮬레이터의 타당성을 검증하였다.

BEMT를 적용한 수평축 풍력터빈 성능해석 소프트웨어의 개발 (Software Development for the Performance Analysis of the HAWT based on BEMT)

  • 김범석;이영호
    • 신재생에너지
    • /
    • 제1권4호
    • /
    • pp.38-42
    • /
    • 2005
  • The optimum design and the performance analysis software called POSEIDON for the HAWT [Horizontal Axis Wind Turbine] was developed by use of BEMT. The Prandtl's tip loss theory was adopted to consider the blade tip loss. The lift and the drag coefficient of S-809 airfoil were predicted via X-FOIL and also the post stall characteristics of S-809 were estimated by the Viterna's equations. All the predicted aerodynamic characteristics are fairly well agreed with the wind tunnel test results, performed by Sommers in Delft university of technology. The rated power of the testing rotor is 20kW[FIL-20] at design conditions. The experimental aerodynamic parameters and the X-FOIL data were used for the power prediction of the FIL-20 respectively. The comparison results shows good agreement in power prediction.

  • PDF

수직/수평축 통합형 풍력발전 시스템 (Dual Rotor Wind Turbine System)

  • 신찬;김지언;송승호;노도환;김동용;정성남
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.289-292
    • /
    • 2001
  • A Dual rotor turbines HAWT/VAWT combined wind turbine system that can drastically enhance the power production capability compared to conventional Single Rotor Turbine HAWT system. The combined system that takes advantage of strong point of both horizontal and vertical Axis wind turbine system developed by a venture firm : KOWINTEC of Chonbuk National University. The HAWT/VAWT hybrid system has been successfully field tested and commercial operation since Feb. 12, 2001 in Hae-chang rest park, Bu-an county near the Sae Man-Kum Sea Dike. This paper will briefly describe the field test results performance and a special aerodynamic structure with bevel-planetary gear box of Dual Rotor Wind Turbine system.

  • PDF

완전 비축유동에 있는 수평축 풍력터빈의 성능예측 (Performance Prediction of the Horizontal Axis Wind Turbine in the Fully Non-Axial Flow)

  • 유능수
    • 산업기술연구
    • /
    • 제14권
    • /
    • pp.39-48
    • /
    • 1994
  • Up to the present the study on the performance prediction of HAWT was perfomed mainly by assuming the axial flow. So in this paper we aimed at the fully non-axial flow of HAWT. For this purpose, we defined the wind turbine pitch angle in addition to the yaw angle to specify the arbitrary wind direction. And we adopted the Glauert method as the basic analysis method then modified this method suitably for our goal. By comparing the computational results obtained by this modified new Glaurert method with the experimental results, it was proved that our method was a very efficient method.

  • PDF

CFD에 의한 1MW 수평축 풍력발전용 로터 설계 및 해석에 관한 연구 (A Study on the 1MW Horizontal Axis Wind Turbine Rotor Design and 3D Numerical Analysis by CFD)

  • 김범석;김유택;남청도;김진구;이영호
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2004년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.396-401
    • /
    • 2004
  • In this paper, a 1MW HAWT(FIL-1000) rotor blade has been designed by BEMT(Blade Element Momentum Theory) with Prandtl's tip loss. Also, a 3-D flow and performance analysis on the FIL-1000 rotor blade has been carried out by using the 3-D Navier-Stokes commercial solver (CFX-5.7) to provide more efficient design techniques to the large-scale HAWT engineers. The rated power and itsapproaching wind velocity at design point (TSR=7.5) are 1MW and 9.99m/s respectively. The rotor diameter is 54.5m and the rotating speed is 26.28rpm. Airfoils such as FFA W-301, DU91-W-250, DU93-W-210, NACA 63418, NACA 63415 consist of the rotor blade from hub to tip. Recent CFX version, 5.7 was adopted to simulate 3-D flow field and to analyze the performance characteristics of the rotor blade. Entire mesh node number is about 730,000 and it is generated by ICEM-CFD to achieve better mesh quality The predicted maximum power occurringat the design tip speed ratio is 931.45kW. Approaching to the root, the inflow angle becomes large, which causesthe blade to be stalled in the region. Therefore, k-$\omega$ SST turbulence model was used to predict the quantitative flow information more accurately. Application of commercial CFD code to optimum blade design and performance analysis was proved to be more effective environment to HAWT blade designers.

  • PDF

RANS 방정식을 이용한 HAWT 로터 블레이드의 회전 유동장 해석 (ROTATING FLOW ANALYSIS AROUND A HAWT ROTOR BLADE USING RANS EQUATIONS)

  • 김태승;이철;손창호;조창열
    • 한국전산유체공학회지
    • /
    • 제13권2호
    • /
    • pp.55-61
    • /
    • 2008
  • The Reynolds-Averaged Navier-Stokes(RANS) analysis of the 3-D steady flow around the NREL Phase VI horizontal axis wind turbine(HAWT) rotor was performed. The CFD analysis results were compared with experimental data at several different wind speeds. The present CFD model shows good agreements with the experiments both at low wind speed which formed well-attache flow mostly on the upper surface of the blade, and at high wind speed which blade surface flow completely separated. However, some discrepancy occurs at the relatively high wind speeds where mixed attached and separated flow formed on the suction surface of the blade. It seems that the discrepancy is related to the onset of stall phenomena and consequently separation prediction capability of the current turbulence model. It is also found that strong span-wise flow occurs in stalled area due to the centrifugal force generated by rotation of the turbine rotor and it prevents abrupt reduction of normal force for higher wind speed than the designed value.