• Title/Summary/Keyword: HAS gene expression

Search Result 2,613, Processing Time 0.027 seconds

Gene Expression Analysis of Methotrexate-induced Hepatotoxicity between in vitro and in vivo

  • Jung, Jin-Wook;Kim, Seung-Jun;Kim, Jun-Sup;Park, Joon-Suk;Yeom, Hye-Jung;Kim, Ji-Hoon;Her, Young-Sun;Lee, Yong-Soon;Kang, Jong-Soo;Lee, Gyoung-Jae;Kim, Yang-Seok;Kang, Kyung-Sun;Hwang, Seung-Yong
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.4
    • /
    • pp.256-261
    • /
    • 2005
  • The recent DNA microarray technology enables us to understand gene expression profiling in cell line and animal models. The technology has potential possibility to comprehend mechanism of multiple genes were related to compounds which have toxicity in biological system. So, microarray system has been used for the prediction of toxicity through gene expression induced by toxicants. It has been shown that compounds with similar toxic mechanisms produce similar changes in gene expression in vivo system. Here we focus on the use of toxicogenomics for the determination of gene expression analysis associated with hepatotoxicity in rat liver and cell line (WB-F344). Methotrexate (MTX) is a chemotherapy agent that has been used for many years in the treatment of cancer because it affects cells that are rapidly dividing. Also it has been known the toxicity of MTX, in a MTX abortion, it stops embryonic cells from dividing and multiplying and is a non-surgical method of ending pregnancy in its early stages. We have shown DNA microarray analyses to assess MTX-specific expression profiles in vivo and in vitro. Male Sprague-Dawely VAF+ albino rats of 5-6 weeks old and WB-F344 cell line have been treated with MTX. Total RNA was isolated from Rat liver and cell line that has treated with MTX. 4.8 K cDNA microarray in house has been used for gene expression profiling of MTX treatment. We have found quite distinct gene expression patterns induced by MTX in a cell line and in vivo system.

Nutritional and Tissue Specificity of IGF-I and IGFBP-2 Gene Expression in Growing Chickens - A Review -

  • Kita, K.;Nagao, K.;Okumura, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.5
    • /
    • pp.747-754
    • /
    • 2005
  • Nutritional regulation of gene expression associated with growth and feeding behavior in avian species can become an important technique to improve poultry production according to the supply of nutrients in the diet. Insulin-like growth factor-I (IGF-I) found in chickens has been characterized to be a 70 amino acid polypeptide and plays an important role in growth and metabolism. Although it is been well known that IGF-I is highly associated with embryonic development and post-hatching growth, changes in the distribution of IGF-I gene expression throughout early- to late-embryogenesis have not been studied so far. We revealed that the developmental pattern of IGF-I gene expression during embryogenesis differed among various tissues. No bands of IGF-I mRNA were detected in embryonic liver at 7 days of incubation, and thereafter the amount of hepatic IGF-I mRNA was increased from 14 to 20 days of incubation. In eyes, a peak in IGF-I mRNA levels occurred at mid-embryogenesis, but by contrast, IGF-I mRNA was barely detectable in the heart throughout all incubation periods. In the muscle, no significant difference in IGF-I gene expression was observed during different stages of embryogenesis. After hatching, hepatic IGF-I gene expression as well as plasma IGF-I concentration increases rapidly with age, reaches a peak before sexual maturity, and then declines. The IGF-I gene expression is very sensitive to changes in nutritional conditions. Food-restriction and fasting decreased hepatic IGF-I gene expression and refeeding restored IGF-I gene expression to the level of fed chickens. Dietary protein is also a very strong factor in changing hepatic IGF-I gene expression. Refeeding with dietary protein alone successfully restored hepatic IGF-I gene expression of fasted chickens to the level of fed controls. In most circumstances, IGF-I makes a complex with specific high-affinity IGF-binding proteins (IGFBPs). So far, four different IGFBPs have been identified in avian species and the major IGFBP in chicken plasma has been reported to be IGFBP-2. We studied the relationship between nutritional status and IGFBP-2 gene expression in various tissues of young chickens. In the liver of fed chickens, almost no IGFBP-2 mRNA was detected. However, fasting markedly increased hepatic IGFBP-2 gene expression, and the level was reduced after refeeding. In the gizzard of well-fed young chickens, IGFBP-2 gene expression was detected and fasting significantly elevated gizzard IGFBP-2 mRNA levels to about double that of fed controls. After refeeding, gizzard IGFBP-2 gene expression decreased similar to hepatic IGFBP-2 gene expression. In the brain, IGFBP-2 mRNA was observed in fed chickens and had significantly decreased by fasting. In the kidney, IGFBP-2 gene expression was observed but not influenced by fasting and refeeding. Recently, we have demonstrated in vivo that gizzard and hepatic IGFBP-2 gene expression in fasted chickens was rapidly reduced by intravenous administration of insulin, as indicated that in young chickens the reduction in gizzard and hepatic IGFBP-2 gene expression in vivo stimulated by malnutrition may be, in part, regulated by means of the increase in plasma insulin concentration via an insulin-response element. The influence of dietary protein source (isolated soybean protein vs. casein) and the supplementation of essential amino acids on gizzard IGFBP-2 gene expression was examined. In both soybean protein and casein diet groups, the deficiency of essential amino acids stimulated chickens to increase gizzard IGFBP-2 gene expression. Although amino acid supplementation of a soybean protein diet significantly decreased gizzard IGFBP-2 mRNA levels, a similar reduction was not observed in chickens fed a casein diet supplemented with amino acids. This overview of nutritional regulation of IGF-I and IGFBP-2 gene expression in young chickens would serve for the establishment of the supply of nutrients to diets to improve poultry production.

Neuropeptide Signaling Regulates Pheromone-Mediated Gene Expression of a Chemoreceptor Gene in C. elegans

  • Park, Jisoo;Choi, Woochan;Dar, Abdul Rouf;Butcher, Rebecca A.;Kim, Kyuhyung
    • Molecules and Cells
    • /
    • v.42 no.1
    • /
    • pp.28-35
    • /
    • 2019
  • Animals need to be able to alter their developmental and behavioral programs in response to changing environmental conditions. This developmental and behavioral plasticity is mainly mediated by changes in gene expression. The knowledge of the mechanisms by which environmental signals are transduced and integrated to modulate changes in sensory gene expression is limited. Exposure to ascaroside pheromone has been reported to alter the expression of a subset of putative G protein-coupled chemosensory receptor genes in the ASI chemosensory neurons of C. elegans (Kim et al., 2009; Nolan et al., 2002; Peckol et al., 1999). Here we show that ascaroside pheromone reversibly represses expression of the str-3 chemoreceptor gene in the ASI neurons. Repression of str-3 expression can be initiated only at the L1 stage, but expression is restored upon removal of ascarosides at any developmental stage. Pheromone receptors including SRBC-64/66 and SRG-36/37 are required for str-3 repression. Moreover, pheromone-mediated str-3 repression is mediated by FLP-18 neuropeptide signaling via the NPR-1 neuropeptide receptor. These results suggest that environmental signals regulate chemosensory gene expression together with internal neuropeptide signals which, in turn, modulate behavior.

Effects of Phenolic Compounds and Hosts on the vir Gene Expression of Various Ti Plasmids

  • Sim, Woong-Seop
    • Journal of Plant Biology
    • /
    • v.38 no.1
    • /
    • pp.19-24
    • /
    • 1995
  • The vir genes expression of Ti plasmid is induced by a family of related phenolic compounds. We investigated the effects of various phenolic compounds, Ti plasmids and hosts on the expression of the vir genes in the same type of octopine Ti plasmids, pTiKU12, pTiAch5 and pTiA6. The vir gene induction of pTiKU12 was remarkably stimulated by p-coumaric acid in relation to acetosyringone, but those of pTiAch5 and pTiA6 were more stimulated by acetosyringone than by p-coumaric acid. The effect of phenolic compound on the vir gene induction was different according to the kind of Ti plasmids. Also, the vir gene expression of A. tumefaciens KU913, which has pTiKU12 was about 6.2 times as much as that of A. tumefaciens KU915, which has pTiKU12 in KU12 host, in the presence of ferulic acid. But no difference was shown in the presence of p-coumaric acid. The vir gene induction abilities of phenolic compounds are different according to the kinds of phenolic compounds, Ti plasmids and hosts.

  • PDF

Construction of Shuttle Promoter-probe and Expression Vectors for Escherichia coli and Bacillus subtilis, and Expression of B. thuringiensis subsp. kurstaki HD-73 Crystal Protein Gene in the Two Species

  • Park, Seung-Hwan;Koo, Bon-Tag;Shin, Byung-Sik;Kim, Jeong-Il
    • Journal of Microbiology and Biotechnology
    • /
    • v.1 no.1
    • /
    • pp.37-44
    • /
    • 1991
  • A shuttle promoter-probe vector, pEB203, was derived from pBR322, pPL703 and pUB110. Using the vector, a useful DNA fragment, 319 bp EcoRI fragment, having strong promoter activity has been cloned from Bacillus subtills chromosomal DNA. Selection was based on chloramphenicol resistance which is dependent upon the introduction of DNA fragments allowing expression of a chloramphenicol acetyl transferase gene. The nucleotide sequence of the 319 bp fragment has been determined and the putative -35 and -10 region, ribosome binding site, and ATG initiation codon were observed. This promoter was named EB promoter and the resultant plasmid which can be used as an expression vector was named pEBP313. The crystal protein gene from B. thuringiensis subsp. kurstaki HD-73 was cloned downstream from the EB promoter without its own promoter. When the resultant plasmid, pBT313, was introduced into Escherichia coli and B. subtilis, efficient synthesis of crystal protein was observed in both cells, and the cp gene expression in B. subtilis begins early in the vegetative phase. The cell extracts from both clones were toxic to Hyphantria cunea larvae.

  • PDF

국립공원 북한산의 환경평가에 관하여 - 도봉산지역 일대를 중심으로-

  • 박봉규
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1985.08b
    • /
    • pp.35-48
    • /
    • 1985
  • Plastids, which are organelles unique to plant cells, bear their own genome that is organized into DNA-protein complexes (nucleoids). Regulation of gene expression in the plastid has been extensively investigated because this organelle plays an important role in photosynthesis. Few attempts, however, have been made to characterize the regulation of plastid gene expression at the chromosomal structure, using plastid nucleoids. In this report, we summarize the recent progress in the characterization of DNA-binding proteins in plastids, with special emphasis on CND41, a DNA binding protein, which we recently identified in the choloroplast nucleoids from photomixotrophically cultured tobacco cells. CND41 is a protein of 502 amino acids which consisted of a transit peptide of 120 amino acids and a mature protein of 382 amino acids. The N-terminal of the 'mature' protein has lysine-rich region which is essential for DNA-binding. CNA41 also showed significant identities to some aspartyl proteases. Protease activity of purified CND41 has been recently confirmed and characterized. On the other hand, characterization of accumulation of CND41 both in wild type and transgenic tobacco with reduced amount of CND41 suggests that CND41 is a negative regulator in chloroplast gene expression. Further investigation indicated that gene expression of CND41 is cell-specifically and developmentally regulated as well as sugar-induced expression. The reduction of CND41 expression in transgenic tobacco also brought the stunted plant growth due to the reduced cell length in stem. GA3 treatment on apical meristem reversed the dwarf phenotype in the transformants. Effects of CND41 expression on GA biosynthesis will be discussed

  • PDF

Ectopic Expression of Apple MbR7 Gene Induced Enhanced Resistance to Transgenic Arabidopsis Plant Against a Virulent Pathogen

  • Lee, Soo-Yeon;Choi, Yeon-Ju;Ha, Young-Mie;Lee, Dong-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.130-137
    • /
    • 2007
  • A disease resistance related gene, MbR7, was identified in the wild apple species, Malus baccata. The MbR7 gene has a single open reading frame (ORF) of 3,288 nucleotides potentially encoding a 1,095-amino acid protein. Its deduced amino acid sequence resembles the N protein of tobacco and the NL27 gene of potato and has several motifs characteristic of a TIR-NBS-LRR R gene subclass. Ectopic expression of MbR7 in Arabidopsis enhanced the resistance against a virulent pathogen, Pseudomonas syringae pv. tomato DC3000. Microarray analysis confirmed the induction of defense-related gene expression in 35S::MbR7 heterologous Arabidopsis plants, indicating that the MbR7 gene likely activates a downstream resistance pathway without interaction with pathogens. Our results suggest that MbR7 can be a potential target gene in developing a new disease-resistant apple variety.

Nitro oxide in human cytomegalovirus replication and gene expression

  • Lee, Jee-Yeon;Lee, Chan-Hee
    • Journal of Microbiology
    • /
    • v.35 no.2
    • /
    • pp.152-157
    • /
    • 1997
  • Infection of human fibroblast (HF) cells with human cytomegalovirus (HCMV) result in changes in the intracellular level of second messengers. Since nitric oxide (NO) production has been known to be related with other second messengers, it is probable that HCMV infection of HF cells may involve NO. To test this possibility, the amount of NO was measured following ogenous addition of NO generators such as sodium nitroprusside (SNP) or S-nitroso-N-a-cetylpenicillamine (SNAP) immediately after HCMV infection, however, inhibited virus multiplication. Furthermore, immunoblot experiment using monoclonal antibody to HCMV major immediate early (MIE) proteins or CAT assay using pCMVIE/CAT (plasmid containing CAT gene driven by HCMV MIE promoter) revealed that SNP or SNAP blocked the MIE gene expression. SNP was more effective than SNAP in hibiting HCMV multiplication or MIE gene expression. SNP produced more NO than SNAP in inhibiting HCMV multiplication or MIE gene expression. SNP produced more NO than SNAP. Although the mechanism for the inhibition of HCMV multiplication and MIE gene expression by NO is still elusive some correlation with NO-mediated inhibition of HCMV-induced increase in cytosolic free Ca$\^$2+/ concentration ([Ca$\^$2+/]) was observed. The increase of [Ca$\^$2+/] following HCMV infection was inhibited by SNP, and less effectively by SNAP. Raising [Ca$\^$2+/ with bromo-A23187 partially reversed the SNP block of MIE gene expression. Thus, there appear to e some relationships among NO. [Ca$\^$2+/], and HCMV MIE gene expression.

  • PDF

Feature-based Gene Classification and Region Clustering using Gene Expression Grid Data in Mouse Hippocampal Region (쥐 해마의 유전자 발현 그리드 데이터를 이용한 특징기반 유전자 분류 및 영역 군집화)

  • Kang, Mi-Sun;Kim, HyeRyun;Lee, Sukchan;Kim, Myoung-Hee
    • Journal of KIISE
    • /
    • v.43 no.1
    • /
    • pp.54-60
    • /
    • 2016
  • Brain gene expression information is closely related to the structural and functional characteristics of the brain. Thus, extensive research has been carried out on the relationship between gene expression patterns and the brain's structural organization. In this study, Principal Component Analysis was used to extract features of gene expression patterns, and genes were automatically classified by spatial distribution. Voxels were then clustered with classified specific region expressed genes. Finally, we visualized the clustering results for mouse hippocampal region gene expression with the Allen Brain Atlas. This experiment allowed us to classify the region-specific gene expression of the mouse hippocampal region and provided visualization of clustering results and a brain atlas in an integrated manner. This study has the potential to allow neuroscientists to search for experimental groups of genes more quickly and design an effective test according to the new form of data. It is also expected that it will enable the discovery of a more specific sub-region beyond the current known anatomical regions of the brain.

Imaging Gene Expression (유전자 발현 영상기법)

  • Lee, Kyung-Han
    • The Korean Journal of Nuclear Medicine
    • /
    • v.34 no.1
    • /
    • pp.1-9
    • /
    • 2000
  • The rapid progress of molecular genetic methods over the past two decades has necessitated the development of methods to detect and quantify genetic activity within living bodies. Reporter genes provide a rapid and convenient tool to monitor gene expression by yielding a readily measurable phenotype upon expression when introduced into a biological system. Conventional reporter systems, however, are limited in their usefulness for in vivo experiments or human gene therapy because of its invasive nature which requires cell damage before assays can be performed. This offers an unique opportunity for nuclear imaging techniques to develope a novel method for imaging both the location and amount of gene expression noninvasively. Current developments to achieve this goal rely on utilizing either reporter enzymes that accumulate radiolabeled substrates or reporter receptors that bind specific radioligands. This overview includes a brief introduction to the background for such research, a summary of published results, and an outlook for future directions.

  • PDF