Following the recent advancement in the use of social networks, a vast amount of different online reviews is created. These variable online reviews which provide feedback data of contents' are being used as sources of valuable information to both contents' users and providers. With the increasing importance of online reviews, studies on opinion mining which analyzes online reviews to extract opinions or evaluations, attitudes and emotions of the writer have been on the increase. However, previous sentiment analysis techniques of opinion-mining focus only on the classification of reviews into positive or negative classes but does not include detailed information analysis of the user's satisfaction or sentiment grounds. Also, previous designs of the sentiment analysis technique only applied to one content domain that is, either product or movie, and could not be applied to other contents from a different domain. This paper suggests a sentiment analysis technique that can analyze detailed satisfaction of online reviews and extract detailed information of the satisfaction level. The proposed technique can analyze not only one domain of contents but also a variety of contents that are not from the same domain. In addition, we design a system based on Hadoop to process vast amounts of data quickly and efficiently. Through our proposed system, both users and contents' providers will be able to receive feedback information more clearly and in detail. Consequently, potential users who will use the content can make effective decisions and contents' providers can quickly apply the users' responses when developing marketing strategy as opposed to the old methods of using surveys. Moreover, the system is expected to be used practically in various fields that require user comments.
Every year, RDFS data tends further toward scalability; hence, the manner of SPARQL processing needs to be changed for fast query. The query processing method of SPARQL has been studied using a scalable distributed processing framework. Current studies indicate that the query engine based on the scalable distributed processing framework i.e., Hadoop(MapReduce) is not suitable for real-time processing because of the repetitive tasks; in addition, it is difficult to construct a query engine based on an In-memory Distributed Query engine, because distributed structure on the low-level is required to be considered. In this paper, we proposed a method to construct a query engine for improving the speed of the query process with the mass triple data. The query engine processes the query of SPARQL using the SparkSQL, which is an In-memory based, distributed query processing framework. SparkSQL is a high-level distributed query engine that facilitates existing SQL statement. In order to process the SPARQL query, after generating the Algebra Tree using Jena, the Algebra Tree is required to be translated to Spark Algebra Tree for application in the Spark system, and construction of the system that generated the SparkSQL query. Furthermore, we proposed the design of triple property table based on DataFrame for more efficient query processing in the Spark system. Finally, we verified the validity through comparative evaluation with the query engine, which is the existing distributed processing framework.
Journal of the Korea Society of Computer and Information
/
v.27
no.2
/
pp.171-177
/
2022
In this paper, we propose a service method that can provide insight into multi-source agricultural data, way to cluster environmental factor which supports data analysis according to time flow, and curate crop environmental factors. The proposed curation service consists of four steps: collection, preprocessing, storage, and analysis. First, in the collection step, the service system collects and organizes multi-source agricultural data by using an OpenAPI-based web crawler. Second, in the preprocessing step, the system performs data smoothing to reduce the data measurement errors. Here, we adopt the smoothing method for each type of facility in consideration of the error rate according to facility characteristics such as greenhouses and open fields. Third, in the storage step, an agricultural data integration schema and Hadoop HDFS-based storage structure are proposed for large-scale agricultural data. Finally, in the analysis step, the service system performs DTW-based time series classification in consideration of the characteristics of agricultural digital data. Through the DTW-based classification, the accuracy of prediction results is improved by reflecting the characteristics of time series data without any loss. As a future work, we plan to implement the proposed service method and apply it to the smart farm greenhouse for testing and verification.
Journal of the Korean Society of Manufacturing Process Engineers
/
v.17
no.2
/
pp.1-7
/
2018
Recently, as interest in the internet of things has increased, a vibration energy harvester has attracted attention as a power supply method for a wireless sensor. The vibration energy harvester can be divided into piezoelectric types, electromagnetic type and electrostatic type, according to the energy conversion type. The electromagnetic vibration energy harvester has advantages, in terms of output density and design flexibility, compared to other methods. The efficiency of an electromagnetic vibration energy harvester is determined by the shape, size, and spacing of coils and magnets. Generating all the experimental cases is expensive, in terms of time and money. This study proposes a method to perform design optimization of an electromagnetic vibration energy harvester using an open source, big data platform.
Proceedings of the Korean Information Science Society Conference
/
2011.06b
/
pp.377-380
/
2011
음악은 인류의 대표적인 예술로서 오랜 세월동안 사랑을 받아왔다. 그 오래된 세월만큼이나 인류가 만들어온 음악의 수는 방대하다. 방대한 음악이 IT기술의 발달과 인터넷의 확산을 통하여 온라인 음악시장을 형성하였고 음악은 디지털 음원으로 관리되게 되었다. 이러한 디지털 음원을 효과적으로 검색하기 위한 방법은 많이 연구되었다. 그리고 검색을 도와줄 대량의 디지털 음원 자료들을 저장하고 관리하는 기법에 관한 연구가 필요하다. 본 논문에서는 대용량 자료를 처리하는 기술로 관심 받고 있는 하둡을 통하여 이 문제를 연구하였다. 하둡의 맵리듀스, HDFS 그리고 HBase를 이용하여 음악 내용기반검색을 설계하였다. 본 시스템은 음악 검색 시스템을 관리하고 유지하는데 있어서 컴퓨팅자원을 절약함으로써 비용을 절감 효과를 얻을 수 있다.
The Journal of the Korea institute of electronic communication sciences
/
v.11
no.4
/
pp.433-440
/
2016
In order to construct a system for big data processing, one needs to configure the node by using network equipments to connect multiple computers or establish cloud environments through virtual hosts on a single computer. However, there are many restrictions on constructing the big data analysis system including complex system configuration and cost. These constraints are becoming a major obstacle to professional manpower training for big data areas which is emerging as one of the most important national competitiveness. As a result, for professional manpower training of big data areas, this paper proposes a Raspberry Pi Board based educational big data processing system which is capable of practical training at an affordable price.
Recently, the wearable computing technology with bio-sensors has been rapidly developed and utilized in various areas such as personal health, care-giving for senior citizens who live alone, and sports activities. In particular, the wearable computing equipment to measure vital signs by means of digital yarns and bio sensors is noticeable. The wearable computing devices help users monitor and manage their health in their daily lives through the customized healthcare service. In this paper, we suggest a system for monitoring and analyzing vital signs utilizing smart healthcare clothing with bio-sensors. Vital signs that can be continuously acquired from the clothing is well-known as unstructured data. The amount of data is huge, and they are perceived as the big data. Vital sings are stored by Hadoop Distributed File System(HDFS), and one can build data warehouse for analyzing them in HDFS. We provide health monitoring system based on vital sings that are acquired by biosensors in smart healthcare clothing. We implemented a big data platform which provides health monitoring service to visualize and monitor clinical information and physical activities performed by the users.
Recently, with the remarkable increase of social network services, it is necessary to extract interesting information from lots of data about various individual opinions and preferences on SNS(Social Network Service). The sentiment information can be applied to various fields of society such as politics, public opinions, economics, personal services and entertainments. To extract sentiment information, it is necessary to use processing techniques that store a large amount of SNS data, extract meaningful data from them, and search the sentiment information. This paper proposes an efficient method to extract sentiment information from various unstructured big data on social networks using HDFS(Hadoop Distributed File System) platform and MapReduce functions. In experiments, the proposed method collects and stacks data steadily as the number of data is increased. When the proposed functions are applied to sentiment analysis, the system keeps load balancing and the analysis results are very close to the results of manual work.
자동차 보급률 증가로 인해 교통 혼잡, 불법 주정차 등의 사회적 문제가 발생하고 있다. 특히 불법 주정차는 교통 혼잡, 주차 공간 부족 등 부가적인 문제를 발생시키고 있다. 따라서 각 지방자치단체에서는 불법 주정차 문제를 해결하기 위한 방안을 연구하고 있다. 그러나 이러한 방안은 초기 비용 발생 및 인력 부족 등의 한계가 있다. 한편, 정보통신의 발달에 따라 공공 업무에도 대량의 공공데이터를 효율적으로 처리하기 위한 연구가 진행되고 있다. 하지만 이러한 연구 또한 빅데이터 처리 플랫폼 부족 및 분석 시스템이 미흡한 한계가 존재한다. 따라서 본 논문에서는 불법 주정차 데이터와 같은 공공 데이터를 효율적으로 처리하기 위해, 주정차 단속 시스템을 위한 하둡 기반 대용량 데이터 관리 및 분석 시스템을 제안한다. 제안하는 시스템은 첫째, 주차단속을 수행할 때 주차단속 데이터를 하이브(Hive)를 통해 저장하고, 단속된 차량의 차주를 검색하여 단속임을 알리거나 과태료를 부과한다. 둘째, 웹 인터페이스를 통해 수집된 주차단속 데이터에 대한 다양한 분석을 수행하고, 분석된 데이터에 대한 R을 이용한 시각화를 제공한다.
Sequential pattern mining that determines frequent patterns appearing in a given set of sequences is an important data mining problem with broad applications. For example, sequential pattern mining can find the web access patterns, customer's purchase patterns and DNA sequences related with specific disease. In this paper, we develop the sequential pattern mining algorithms using MapReduce framework. Our algorithms distribute input data to several machines and find frequent sequential patterns in parallel. With synthetic data sets, we did a comprehensive performance study with varying various parameters. Our experimental results show that linear speed up can be achieved through our algorithms with increasing the number of used machines.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.