최근 국내의 콘텐츠 생산률이 증가함에 따라, 많은 사람들이 즐길 수 있는 콘텐츠들이 많아 졌다. 하지만 사람들은 많아진 콘텐츠로 인해, 오히려 원하는 정보를 빠른 시간에 얻는 것이 힘들어졌다. 이러한 문제를 해결하기 위해 다양한 방식의 새로운 서비스들이 제공 되고 있다. 추천 시스템 중에서 웹툰을 추천해주는 알고리즘으로 협업필터링 방법이 가장 많이 사용되고 있다. 협업필터링 방법에는 희박성과 확장성, 투명성의 문제점들을 가지고 있다. 따라서 본 논문에서는 협업 필터링 방법의 희박성 문제를 보완하고자 개인의 성향을 반영하여 효율이 좋은 웹툰 추천 시스템을 제안하고, 하둡 시스템에서 구현한다.
Proceedings of the Korean Information Science Society Conference
/
2011.06d
/
pp.163-166
/
2011
클라우드 컴퓨팅이란 인터넷 기술을 활용하여 모든 인프라 자원(소프트웨어, 서버, 스토리지, 네트워크 등)을 서비스화(as a Service)하여, 언제, 어디서든, 장치에 독립적으로 네트워크를 통해 사용하고, 사용한 만큼 비용을 지불하는 컴퓨팅으로써, 대표적인 서비스 업체로는 구글과 아마존이 있다. 최근 아파치 재단에서는 구글의 GFS와 동일 또는 유사한 시스템을 만들기 위해 HDFS 오픈소스 프로젝트를 진행하고 있다. HDFS는 빈번한 하드웨어 고장에도 원본 데이터를 복구할 수 있는 가용성을 보장하기 위해 파일 데이터를 블록 단위로 나누어, 다시 datanode에 복제하여 저장한다. 이 기법은 복제가 많아 질수록 가용성은 높아지나 스토리지가 증가한다는 단점을 가지고 있다. 따라서 본 논문에서는 이러한 문제점을 해결하기 위해 행렬의 특성을 이용한 새로운 분산 저장 기법을 제안한다.
Proceedings of the Korean Information Science Society Conference
/
2011.06d
/
pp.263-266
/
2011
P2P 및 스트리밍 서비스를 포함한 콘텐츠의 전송은 인터넷 트래픽의 80% 이상을 차지한다. 인터넷 사용자들은 보다 빠르게 콘텐츠를 받고 싶어하고, 이러한 요구를 수용하기 위하여 빠른 콘텐츠 전송을 위한 다양한 방법들이 제시되었다. 본 논문에서는 현재 콘텐츠 전송을 위해 사용되고 있는 CDN 방식과 P2P 방식을 비교한다. 동시에 파일 복구에 강한 Hadoop에서 사용하는 HDFS를 적용한 파일 전송 방식에 대해서 다운로드 속도, 전체 네트워크 트래픽 양과 희소 콘텐츠에 대한 파일 전송 방식을 비교하고, 이를 통해 콘텐츠 전송을 위한 보다 나은 서비스 방식을 제안한다.
네트워크 기술의 발전으로 인터넷의 보급률이 증가함에 따라, 네트워크 사용량 또한 증가하고 있다. 그러나 네트워크 사용량이 증가함에 따라 악의적인 네트워크 접근 또한 증가하고 있다. 이러한 악의적인 접근은 네트워크에서 발생하는 보안 로그를 분석함으로써 탐지가 가능하다. 그러나 대규모의 네트워크 트래픽이 발생함에 따라, 보안 로그의 처리 및 분석에 많은 시간이 소요된다. 본 논문에서는 MapReduce 환경에서 네트워크 공격 탐지를 위한 실시간 로그 분석 시스템을 개발한다. 이를 위해, Hadoop의 MapReduce를 통해 보안 로그의 속성을 추출하고 대용량의 보안 로그를 분산 처리한다. 아울러 처리된 보안 로그를 분석함으로써 실시간으로 발생하는 네트워크 공격 패턴을 탐지하고, 이를 시각적으로 표현함으로써 사용자가 네트워크 상태를 보다 쉽게 파악할 수 있도록 한다.
International Journal of Fuzzy Logic and Intelligent Systems
/
v.14
no.4
/
pp.313-321
/
2014
In the current era of data-intensive services, the handling of big data is a crucial issue that affects almost every discipline and industry. In this study, we propose a classification method for large volumes of numeric data, which is implemented in a distributed programming framework, i.e., MapReduce. The proposed method partitions the data space into a grid structure and it then models the probability distributions of classes for grid cells by collecting sufficient statistics using distributed MapReduce tasks. The class labeling of new data is achieved by k-nearest neighbor classification based on Bayesian inference.
This paper review about kerberos security authentication scheme and policy for big data service. It analyzed problem for security technology based on Hadoop framework in big data service environment. Also when it consider applying problem of kerberos security authentication system, it analyzed deployment policy in center of main contents, which is occurred in commercial business. About the related applied Kerberos policy in US, it is researched about application such as cross platform interoperability support, automated Kerberos set up, integration issue, OPT authentication, SSO, ID, and so on.
Proceedings of the Korean Society of Computer Information Conference
/
2014.07a
/
pp.351-352
/
2014
분산 파일시스템은 서로 분산된 여러 서버들을 가지고 파일 시스템을 구성함으로써 높은 확장성과 고가용성을 지원한다. HDFS는 대용량 데이터 저장장치로 처리되고 있지만 실시간 파일 접근에 관한 고려는 부족하다. 파일을 읽을 때 네임노드와 데이터 노드는 상호 작용을 하지만 엄청난 대용량의 데이터 그리고 동시작업량이 많을 때 접근수행속가 급격하게 감소하게 된다. 따라서 실시간 클라우드 서비스 환경에서 HDFS 파일 접근 수행속도를 향상시키기 위한 연구가 이슈이다. 본 논문에서는 HDFS의 위에 분산 캐시를 둔 새로운 캐시시스템을 제안한다.
Proceedings of the Korean Society of Computer Information Conference
/
2014.07a
/
pp.175-176
/
2014
본고에서는 교육 빅데이터의 개념, 가치, 처리 기술 및 분석 방법 등을 탐색하였다. '온라인과 오프라인 교수 학습 활동의 투입, 과정, 산출을 통해 생산되는 국가, 지역, 학교, 교사, 학생 수준의 자료'로 정의할 수 있는 교육 빅데이터는 Hadoop으로 대표되는 분산 컴퓨팅 기술을 통해 효율적으로 처리할 수 있다. 대규모 교육 자료에서 의미있고 유용한 결과를 도출하기 위해 주로 사용되는 분석 방법에는 교육 데이터 마이닝, 학습 분석학과 시각 자료 분석학이 있다. 교육 데이터 마이닝은 학생과 교사, 학교의 다양한 수준에서 자료를 폭넓게 분석하는 측면이 강한 반면에 학습 분석학은 학생 수준에서의 자료 분석에 더 초점을 맞추는 경향이 있으며, 시각 자료 분석학은 자료에 대한 분석 자체보다는 분석 결과를 효과적으로 표현하는 방식에 초점이 주어져 있다.
Proceedings of the Korean Society of Computer Information Conference
/
2014.07a
/
pp.337-340
/
2014
클라우드 시스템이 큰 이슈로 떠오르면서 그 기반이 되는 분산 파일 시스템에 관한 연구가 계속되고 있다. 최근 제안된 분산파일 시스템은 대부분 확장 가능하며 신뢰성이 있는 시스템으로 구성되어 있으며 내고장성(Fault tolerance)과 높은 가용성을 위해 데이터 복제 기법을 사용하며 하둡 분산 파일 시스템에서는 블락의 복제수를 기본3개로 지정한다. 그러나 이 정책은 복제수가 많아지면 많아질수록 가용성은 높아지지만 스토리지 또한 증가한다는 단점이 있다. 본 논문에선 이러한 문제점을 해결하기 위해 최소한의 블락 복제수와 복제된 블락을 효율적으로 배치하여 더 좋은 성능과 부하분산(Load Balancing)하기 위한 기법을 제안한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.