• Title/Summary/Keyword: HAAFP

Search Result 22, Processing Time 0.025 seconds

Efficiency Evaluation of Different Processes in Drinking Water Treatment (정수처리에서 서로 다른 공정의 처리효율에 대한 비교분석연구)

  • Kim, Hyung-Suk;Lee, Byoung-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.4
    • /
    • pp.597-604
    • /
    • 2011
  • This study was performed to compare finished water quality among three different processes. A detailed assessment of performance was carried out during the five months of operation. Finished water quality was evaluated on the basis of parameters such as Dissolved organic carbon (DOC), $UV_{254}$ absorbance, haloacetic acid formation potential (HAAFP), geosmin, 2-methylisoborneol (2-MIB), heterotrophic bacteria and total coliform bacteria. The treatment processes were Process 1 (coagulation-flocculation-sedimentation-sand filtration-ozone-GAC), Process 2 (coagulation-flocculation-sedimentation -microfiltration-ozone-GAC), and Process 3 (coagulation-flocculation-sedimentation- sand filtration-GAC), compared side by side in the pilot testing. Process 2 was found to have better removal efficiency of DOC, $UV_{254}$ absorbance, HAAFP and heterotrophic bacteria in comparison with process 1 and process 3 under identical conditions. Geosmin, 2-MIB and total coliform bacteria were not detected in finished water from each process.

Formation Characteristics of DBPs by Chlorination in Water Treatment Plant (정수장에서 소독부산물의 생성특성)

  • Rhee, Dong-Seok;Min, Byoung-Seob;Park, Sun-Ku;Kim, Joung-Hwa;Rhyu, Jae-Keun
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.1
    • /
    • pp.55-62
    • /
    • 2004
  • This study was carried out to investigate the formation of DBPs(Disinfection By-products) such as trihalomethane(THMs) and haloacetic acid(HAAs) by chlorination in raw water and finished water of Water Treatment Plant(WTP). The formation of THMs was increased with the increase of pH and reaction time. HAAs was found as a high formation at a pH 7 and low formation at pH 9. THMFP(Trihalomethane Formation Potential) was the highest formation potential in raw water of Pu-1 and the lowest in raw water of Pa-1. In case of HAAFP(Haloacetic acid formation potential), So-1 showed the highest value, while Pa-1 showed the lowest value. It was investigated the relationship between HAAs and organic matters which were described as DOC(dissolved organic carbon) and $UV_{254}$. In both DOC and $UV_{254}$ versus HAAFP, Pu-1 showed the good correlation coefficients($r^2$) with 0.95 and 0.84, respectively. For three WTP investigated, DBPs(THMs + HAAs) was shown over the range of $42.00{\sim}49.36{\mu}g/L$. This result might be due to the different characteristic of organic matters in raw water and the difference of chlorine dosage for a water treatment.

Application of Enhanced Coagulation for Nakdong River Water Using Aluminium and Ferric Salt Coagulants (낙동강 원수를 대상으로 Al염계 및 Fe염계 응집제를 이용한 고도응집의 적용)

  • Moon, Sin-Deok;Son, Hee-Jong;Yeom, Hoon-Sik;Choi, Jin-Taek;Jung, Chul-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.9
    • /
    • pp.590-596
    • /
    • 2012
  • Enhanced coagulation is best available technologies to treat NOM in water to produce clean drinking water. In this research, the comparison experiments between conventional coagulation (CC) and enhanced coagulation (EC) using 4 type coagulants i.e., ferric chloride, aluminium sulphate (alum), poly aluminium sulphate organic magnesium (PSOM) and poly aluminium chloride (PACl) were performed in terms of surrogate parameters such as dissolved organic carbon (DOC), trihalomethane formation potential (THMFP), haloacetic acid formation potential (HAAFP) and zeta potential variation in order to find out the most effective coagulant and conditions to fit Nakdong River water. When applied to EC process, the turbidity removal efficiency did not increased gradually compared to the CC process when adding coagulants. Furthermore, the removal efficiency of turbidity became decreased much more as coagulants were added increasingly whereas the removal efficiency of DOC, THMFP and HAAFP became increased by 13~18%, 9~18% and 9~18% respectively compared to the CC process. The characteristics of turbidity removal showed relatively high removal efficiency considering the pH variation in entire pH range when using $FeCl_3$ and PACl. Additionally, in case of alum and PSOM steady removal efficiency was shown between pH 5 and pH 8. In terms of DOC surrogate the coagulants including 4 type coagulants indicated high removal efficiency between pH 5 and pH 7. The removal efficiency of dissolved organic matter (DOM) in EC between less than 1 kDa and more than 10 kDa augmented by 11~21% and 16% respectively compared to the CC process. The removal efficiency of hydrophobic and hydrophilic organic matter proved to be increased by 27~38% and 11~15% respectively. In conclusion, the most effective coagulant relating to EC for Nakdong River water was proved to be $FeCl_3$ followed by PSOM, PAC and alum in order.

A Study on the Characteristics of Natural Organic Matter and Disinfection By-Product Formation in the Juam Reservoir

  • Shin, Dae-Yewn;Moon, Ok-Ran;Yoon, Mi-Ran;Kim, Nam-Joung;Kang, Gang-Unn;Seo, Gwang-Yeob
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2005.06a
    • /
    • pp.259-262
    • /
    • 2005
  • This study aims to identify the relationship between characteristics of aqueous organic matter and chlorination by-products formation potential according to temporal effect of Juam reservoir in Sun-Choen. The molecular weight distribution and chemical composition of precursors and their relationship with disinfection by-products(DBPs) were investigated. Most of the organic matters was responsible for the major DBP precursors in the raw water are small compounds with a molecular weight less than IKDa, Aromatic contents determined by SUVA correlated well with DBPs, THMs, and HAAs formation. Especially, THMFP/DOC showed better correlation with SUVA than HAAFP/DOC and DBPFP/DOC with SUVA in Juam reservoir. Therefore, effective removal of small molecules or hydrophobic organic matter prior to disinfection process will significantly reduce the DBP concentration in the finished water.

  • PDF

Applicability Evaluation of Two-stages and Dual Media Filtration System by the Small-scale Pilot Plant (이단이층 복합여과시스템의 소규모 파일롯 플랜트 적용성 평가)

  • Woo, Dal-Sik;Song, Si-Byum;Hwang, Byung-Gi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.4
    • /
    • pp.857-864
    • /
    • 2009
  • This study aimed at developing the two stage and dual filtration system. It has a sand + activated carbon layer above the underdrain system and a sand layer above the middledrain system for pretreatment. When retrofitting an old filter bed or designing a new one, this technology can substitute the existing sand filter bed without requiring a new site. In order to extend the filtering duration, the upper layer of the filter bed consists of the rapid sand filtration with large particles which pre-treats and removes coarse particles and turbidity matters. The middle layer has biological activated carbon(BAC) and granular activated carbon(GAC) to eliminate dissolved organic matters, disinfection by-products precursors etc. The lower layer consists of the sand filtration for the post filtering mode. In this study, a pilot plant of two stage and dual filtration system was operated for 4 months in the S water treatment plant in Kyounggi-Do. The stability of turbidity was maintained below 1NTU. The TOC, THMFP and HAAFP were removed about 90% by two stage and dual filtration system, which is almost 2 times higher than S WTP. From analysis result of HPC along the depth of activated carbon + sand layer at 2nd stage, microorganism was mostly not detected, however, increment of HPC was shown as it becomes deeper. It indicates that growth of microorganism is occurred at activated carbon layer.

Treatment Characteristics of Sand Filtration and Microfiltration (MF) in Advanced Water Treatment (고도정수처리에서 사여과와 정밀여과의 유기물처리특성에 관한 연구)

  • Kim, Hyung-Suk;Lee, Byoung-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.6
    • /
    • pp.723-734
    • /
    • 2010
  • With a belief of high water quality production and less chemical usage, membrane technology including Microfiltration (MF), Ultrafiltration (UF), and Nanofiltration(NF) is being employed more and more in drinking water treatment process. However, due to higher energy consumption of UF and NF, MF is normally used for drinking water treatment especially in a plant of large scale. In this investigation, performance ofsand filtration and membrane filtration was compared regarding removal of various water quality parameters, such as TOC, DOC, KMnO4 consumption, THMFP, and HAAFP. Two lines of pilot plant have been operated, one of which line is a traditional advanced water treatment process which includes sedimentation, sand filtration, ozonation, and activated carbon, and the other line is an alternative treatment process which includes sedimentation with inclined plate, MF membrane, ozonation, and activated carbon. For the first about 4months of period, MF filtration showed similar or little bit higher performance than sand filtration. However, after about 4month later, sand filtration showed much higher performance in removing all parameters monitored in the investigation. It was found that sand filtration is a better option than MF filtration as far as microbial community is fully activated in sand filter bed.

Removal of NOM in a Coagulation Process Enhanced by Modified Clay (개질 Clay를 첨가한 응집공정에서의 자연유기물 제거)

  • Park, Ji-Hye;Lee, Sang-Yoon;Park, Hung-Suck
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.1
    • /
    • pp.37-46
    • /
    • 2007
  • A feasibility test was conducted to evaluate the addition of turbidity substance in a coagulation process to remove natural organic matters (NOM), the precursor of disinfection by-products (DBPs). The experimental water sources were synthetic water containing 5 mg/L of humic acid and 50 mg/L of NaHCO3 and drinking water resource of Ulsan city (S Dam water, D Dam water and Nak-Dong raw water). The examined turbidity substances were kaolin, acid clay, and modified clay (0.38 meq $NH_4{^+}-N/g$ clay). In Jar tests at different concentrations of the turbidity substances (5, 10, 15, 20, 30 mg/L) using the synthetic water, the turbidity substances improved the removal of turbidity, UV-254 absorbance and dissolved organic carbon (DOC) by 23.8-38.1%, 17.0-24.5% and 2.5-44.5%, respectively. The modified clay showed higher removal efficiencies than other substances. In Jar tests using the drinking water, 10 and 20 mg/L of modified clay enhanced the removal efficiencies of turbidity, UV-254 absorbance, DOC, trihalomethane formation potential (THMFP), and haloacetic acid formation potential (HAAFP) by 3.0~4.3%, 19.1~29.0%, 12~34.9%, 4.9~36.7%, and 1.6~30.2%, respectively.

막분리(NF, UF)를 이용한 자연유기물(NOM) 제거에 관한 연구(II) - NF, UF 운전특성과 HAA생성능 제거 -

  • Song, Yang-Seok;Park, Yong-Hun;Jo, Yeong-Gwan;Jo, Jae-Won;Park, Don-Hui
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.334-338
    • /
    • 2003
  • In this study, We evaluated the removal efficiency of natural organic matters(NOM) in the Ultrafiltration(UF) and Nanofiltration(NF) membranes with molecular weight cutoff of 2500(GH), 8000(GM) and 250(HL), respectively. Filtration type was cross-flow filtration. The investigation result about raw water structure was hydrophobic 28%, hydrophilic 53% and transphilic 19%, in conjunction with XAD8/4 resin fractionation method. We were compared with UF(GM, GH) and NF(HL), in operation characteristic. In spite of poor MWCO, GM(8000Da) was superior than GH(2500Da), in the efficiency of total operation. It was showed the NF(HL) 80%, UF(GM) 50%, in the removing efficiency of HAAFP.

  • PDF

A Study on the Process Selection for Two-stage and Dual Media Filtration System for Improving Filtration Performance (여과 성능향상을 위한 이단이층 복합여과시스템의 공정선정 연구)

  • Song, Si Bum;Jo, Min;Nam, Sang Ho;Woo, Dal Sik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.2
    • /
    • pp.203-214
    • /
    • 2007
  • This study aimed at researching the process selection for two-stage and dual media filtration system, as a technology substituting the existing sand filter without expanding the site when retrofitting an old filter bed or designing a new one. In order to select the process for optimum complex filtration system, three running conditions have been tested. Test results demonstrated that Run 3 in which the 1st stage was filled with anthracite and coarse sand, and the 2nd stage was filled up with activated carbon and fine sand reduced the head loss and the load of turbidity substances. Also, Run 3 showed better performance in removing TOC, particle counts, THMFP and HAAFP, compared to other two conditions. 99 % of Cryptosporidium was removed. Bisphenol-A was rarely removed from the 1st stage of coarse sand and 2nd stage of fine sand, but 99 % of it was removed from the 2nd stage of activated carbon. In conclusion, when it is required to retrofit an old rapid filter bed or design a new one for the purpose of improving filtration performance, the following two-stage and dual media filtration system is suggested: the 1st stage of filter bed needs to be filled up with coarse sand to remove turbidity as the pretreatment for extending duration of filtering, the top part of 2nd stage needs to be filled up with granular activated caron to remove dissolved organic matters and others as the main process, and finally the bottom part of 2nd stage needs to be filled up with fine sand as the finishing process.

Improvement of Rapid Sand Filtration to Two Stage Dual Media Filtration System in Water Treatment Plant (정수처리장내 급속모래 여과지의 이단복합여과시스템으로의 개량)

  • Woo, Dal-Sik;Hwang, Kyu-Won;Kim, Joon-Eon;Hwang, Byung-Gi;Jo, Kwan-Hyung
    • Journal of Environmental Health Sciences
    • /
    • v.37 no.2
    • /
    • pp.141-149
    • /
    • 2011
  • This study aimed for developing a two stage dual media filtration system. It has a sand and activated carbon layer above the under-drain system, and a sand layer above the middle-drain system for pretreatment. When retrofitting an old sand filter bed or designing a new one, this technology can substitute the existing sand filter bed without requiring a new plant site. The removal rate of total particle is 93, and 3~7 ${\mu}m$ and 5~15 ${\mu}m$ particles are all 97%. These high removal efficiencies of each pollutant due to adsorption and biological oxidation in activated carbon filter layer. The best backwashing method of two stage dual media filtration system is ascertained by air injection, air + water injection and water injection sequence. In this study, a pilot plant of two stage and dual filtration system was operated for 4 months in water treatment plant. The stability of turbidity was maintained below 1 NTU. The TOC, THMFP and HAAFP were removed about 90% by two stage and dual media filtration system, which is almost 2 times higher than existing water treatment plant.