• 제목/요약/키워드: HA coating

검색결과 356건 처리시간 0.039초

Surface characteristics of a novel hydroxyapatite-coated dental implant

  • Jung, Ui-Won;Hwang, Ji-Wan;Choi, Da-Yae;Hu, Kyung-Seok;Kwon, Mi-Kyung;Choi, Seong-Ho;Kim, Hee-Jin
    • Journal of Periodontal and Implant Science
    • /
    • 제42권2호
    • /
    • pp.59-63
    • /
    • 2012
  • Purpose: This study evaluated the surface characteristics and bond strength produced using a novel technique for coating hydroxyapatite (HA) onto titanium implants. Methods: HA was coated on the titanium implant surface using a super-high-speed (SHS) blasting method with highly purified HA. The coating was performed at a low temperature, unlike conventional HA coating methods. Coating thickness was measured. The novel HA-coated disc was fabricated. X-ray diffraction analysis was performed directly on the disc to evaluate crystallinity. Four novel HA-coated discs and four resorbable blast medium (RBM) discs were prepared. Their surface roughnesses and areas were measured. Five puretitanium, RBM-treated, and novel HA-coated discs were prepared. Contact angle was measured. Two-way analysis of variance and the post-hoc Scheffe's test were used to analyze differences between the groups, with those with a probability of P<0.05 considered to be statistically significant. To evaluate exfoliation of the coating layer, 7 sites on the mandibles from 7 mongrel dogs were used. Other sites were used for another research project. In total, seven novel HA-coated implants were placed 2 months after extraction of premolars according to the manufacturer's instructions. The dogs were sacrificed 8 weeks after implant surgery. Implants were removed using a ratchet driver. The surface of the retrieved implants was evaluated microscopically. Results: A uniform HA coating layer was formed on the titanium implants with no deformation of the RBM titanium surface microtexture when an SHS blasting method was used. Conclusions: These HA-coated implants exhibited increased roughness, crystallinity, and wettability when compared with RBM implants.

Zn/HA Coating on the Ti-xNb Alloys after Nanotube Formation for Dental Implant

  • Byeon, In-Seop;Choe, Han-Cheol
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2015년도 추계학술대회 논문집
    • /
    • pp.139-140
    • /
    • 2015
  • Zn/HA coating on the Ti-xNb alloys after nanotube formation for dental lmplant was researched using various experimental methods. Due to g ood biocompatibility and osteoconductivity, hydroxyapatite (HA) coating s on metallic biomedical implants were widely employed in orthopedic and dental applications. To improve biocompatibilities, Zinc (Zn) plays very important roles in the bone formation and immune reg ulations. The nanotube formed Zn-HA films were characterized with X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS).

  • PDF

Effects of HA and TiN Coating on the Electrochemical Characteristics of Ti-6Al-4 V Alloys for Bone Plates

  • Oh, Jae-Wook;Choe, Han-Cheol;Ko, Yeong-Mu
    • 한국표면공학회지
    • /
    • 제37권5호
    • /
    • pp.249-252
    • /
    • 2004
  • Effects of HA and TiN coating on the electrochemical characteristics of Ti-6AI-4V alloys for bone plates were investigated using various test methods. Ti-6AI-4V alloys were fabricated by using a vacuum induction furnace and bone plates were made by laser cutting and polishing. HA was made of extracted tooth sintered and then tooth ash was used as HA coating target. The TiN and HA film coating on the surface were carried on using electron-beam physical vapor deposition (EB-PVD) method. The corrosion behaviors of the samples were examined through potentiodynamic method in 0.9% NaCI solutions at $36.5\pm$$1^{\circ}C$ and corrosion surface was observed using SEM and XPS. The surface roughness of TiN coated bone plates was lower than that of tooth ash coated plates. The structure of TiN coated layer showed the columnar structure and tooth ash coated layer showed equiaxed and anisotrophic structure. The corrosion potential of the TiN coated specimen is comparatively high. The active current density of TiN and tooth ash coated alloy showed the range of about $1.0xl0^{-5}$ $A\textrm{cm}^2$, whereas that of the non-coated alloy was$ 1.0xl0^{-4}$ $A\textrm{cm}^2$. The active current densities of HA and TiN coated bone plates were smaller than that of non-coated bone plates in 0.9% NaCl solution. The pitting potential of TiN and HA coated alloy is more drastically increased than that of the non-coated alloy. The pit number and pit size of TiN and HA coated alloy decreased in compared with those of non-coated alloy. For the coated samples, corrosion resistance increased in the order of TiN coated, tooth ash coated, and non-coated alloy.

지하매설배관의 피복손상부 탐측에 관한 연구 (Coating defect survey of underground buried pipelines)

  • 하태현;배정효;이현구;김대경;하윤철;박경화
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 전기설비
    • /
    • pp.61-63
    • /
    • 2005
  • In present, most of underground metallic structures, especially gas pipeline, have adopted in order to protect against a corrosion. If a coating defect is be on the surface of gas pipeline, the pitting corrosion is occur normally. So, in the corrosion field, investigation of coating defect is very important activity. In this paper, DCVG(Direct Current Voltage Gradient) method which is can detect a coating defect of gas pipeline is introduced. And also, the assesment of coating defect position according to the position of temporary anode of ICCP(Impresed Current Cathodic Protection) system is presented.

  • PDF

Biological Effects of Different Thin Layer Hydroxyapatite Coatings on Anodized Titanium

  • Sohn, Sung-Hwa;Jun, Hye-Kyoung;Kim, Chang-Su;Kim, Ki-Nam;Ryu, Yeon-Mi;Lee, Seung-Ho;Kim, Yu-Ri;Seo, Sang-Hui;Kim, Hye-Won;Shin, Sang-Wan;Ryu, Jae-Jun;Kim, Meyoung-Kon
    • Molecular & Cellular Toxicology
    • /
    • 제1권4호
    • /
    • pp.237-247
    • /
    • 2005
  • Several features of the implant surface, such as roughness, topography, and composition play a relevant role in implant integration with bone. This study was conducted in order to determine the effects of various thin layer hydroxyapatite (HA) coatings on anodized Ti surfaces on the biological responses of a human osteoblast-like cell line (MG63). MG63 cells were cultured on A (100 nm HA coating on anodized surface), B (500-700 nm HA coating on anodized surface), C ($1{\mu}m$ HA coating on anodized surface), and control (non HA coating on anodized surface) Ti. The morphology of these cells was assessed by SEM. The cDNAs prepared from the total RNAs of the MG63 were hybridized into a human cDNA microarray (1,152 elements). The appearances of the surfaces observed by SEM were different on each of the four dental substrate types. MG63 cells cultured on A, C and control exhibited cell-matrix interactions. It was B surface showing cell-cell interaction. In the expression of several genes were up-, and down-regulated on the different surfaces. The attachment and expression of key osteogenic regulatory genes were enhanced by the surface morphology of the dental materials used.

지르코니아의 생체적합성과 임플란트로서의 생체활성에 대한 연구: In vivo 실험 문헌 고찰 (A review of biocompatibility of zirconia and bioactivity as a zirconia implant: In vivo experiment)

  • 서다원;김영균;이양진
    • 대한치과보철학회지
    • /
    • 제57권1호
    • /
    • pp.88-94
    • /
    • 2019
  • 심미적 치료에 대한 요구가 늘어나면서 높은 강도와 심미성을 갖는 지르코니아의 요구도 증가하고 있다. 이러한 흐름에 비추어 지르코니아의 생체적 합성을 평가하는 것은 중요한 일이다. 이번 논문에서는 지르코니아의 생체적합성에 대한 in vivo 실험에 대한 문헌 연구를 진행하였다. In vivo 실험에서 연조직, 경조직에 대한 지르코니아의 생체적합성을 확인할 수 있었다. 다양한 실험동물 및 환자에서 진행된 연구의 대다수에서 지르코니아의 높은 생체적합성이 보고되었으며, 신생골 합성 및 골부착의 면에서 티타늄과 유사한 성질을 보였다. 한편, 지르코니아는 임플란트로도 활용할 수 있다. 임플란트로 활용하기 위해 HA (hydroxyapatite)를 처리하여 생체활성을 높이는 다양한 방식이 제안되고 있다. 하지만 기존의 티타늄 임플란트에 HA를 코팅하는 방식은 낮은 결합강도 및 HA의 변성으로 인한 문제점이 있었기 때문에 HA-지르코니아 composite, HA-coated 지르코니아, HA-지르코니아 functionally graded material (FGM) 또는 알루미나 개재 HA-지르코니아 등의 새로운 방식이 연구되고 있다. 이러한 방식들은 보다 높은 결합강도를 지니고 있으며, 높은 생체적합성을 보여주고 있다.

Influence of Silver Ions in HA Film on Morphology of Macrophages

  • Feng, Q.L.;Kim, T.N.;Kim, J.W.
    • 한국진공학회지
    • /
    • 제7권s1호
    • /
    • pp.50-56
    • /
    • 1998
  • Ion beam assisted deposition (IBAD) was successfully used to produce a dense and ultra-adherent Hydroxyapatite (HA) film on titanium alloy and alumina. Recently it is also proved that the HA coatings on alumina substrate treated with 20 ppm $AgNO_3$ had the structure of $(Ag, Ca)_10(PO_4)6(OH)_2$, which exhibited excellent antimicrobial effects. The present paper aims to morphlogically characterize the adhesion of macrophages on newly developed Ag-HA coated alumina and Ti6A14V substrates and to evaluate the biocompatibility of the coatings in vitro. It can be found that the cell number on alumina of the concentration of $AgNO_3$ in the treatment, the cell number on Ag-HA coatings decreased. Up to 20 ppm $AgNO_3$ by Ag-treatment, the morphological development of the cells on Ag-HA coating was similar to that of the cells on HA coating, suggesting the biotolerance of the Ag-HA coatings.

  • PDF

양극산화처리된 티타늄 표면에 이온빔보조증착방식을 이용한 수산화인회석 코팅시 소결온도의 차이가 조골세포에 미치는 영향 (The effect of different crystallization temperature of the hydroxyapatite coating produced by ion beam-assisted deposition on anodizing-treated titanium disks on human osteosarcoma cells)

  • 배아란;원현두;이성복;김형섭;우이형
    • 대한치과보철학회지
    • /
    • 제49권4호
    • /
    • pp.333-340
    • /
    • 2011
  • 연구 목적: 이 연구의 목적은 수산화인회석 코팅 결정도가 조골세포의 분화에 미치는 영향을 조사하기 위함이다. 연구 재료 및 방법: 제작된 모든 시편은 양극산화과정을 거치면서 티타늄 표면에서 산화막을 형성하여 표면 거칠기를 증가시켰고 각 시편의 표면을 IBAD (ion beam-assisted deposition) 시스템을 이용하여 HA (hydroxyapatite) 코팅하였다. HA의 코팅이 완료된 시편들은 전기가열로(AJ-SB3, AJEON Heating Industrial Co., Ltd, Seoul, Korea)에 넣어 각 실험군별로 $100^{\circ}C$, $300^{\circ}C$, $500^{\circ}C$, $800^{\circ}C$까지 온도를 상승시켜 열처리하였다. HA 코팅을 실시하지 않은 군은 대조군으로 설정하고(control) 소결된 각각의 그룹은 HA100, HA300, HA500, HA800으로 구분하여 설정하였다. 시편 표면의 물리적 성질은 표면 거칠기 테스트, XRD, SEM으로 평가되었다. 수산화인회석 코팅의 결정도의 효과는 조골세포의 분화에 의해 연구되었는데 1, 3, 5, 7일 후에 평가되었다. 성장과 분화 역학은 세포증식능평가, ALP (alkaline phosphatase) 활성능 평가에 의해 조사되었다. 결과: 표면 거칠기는 양극산화 처리 후 IBAD 방식으로HA를 코팅하여도 그 거칠기에는 별 다른 차이가 없음을 보였다. X선 회절분석 결과 $100^{\circ}C$$300^{\circ}C$에서 소결한 시편은 HA의 결정화가 없는 무정형상태이며 $500^{\circ}C$$800^{\circ}C$에서 소결한 시편의 HA에서는 결정화 상태가 나타났다. 표면에 배양된 조골 세포의 증식능을 측정한 결과 1일과 3일에서는 각 실험군간의 유의할만한 차이가 있었으나, 5일과 7일에는 각 대조군과 실험군 모두 유의성 있는 차이를 보이지 않았다. ALP 활성능은 HA100과 HA300보다 HA500과 HA800이 더 높았다. 결론: 본 연구의 결과에서 양극산화처리된 티타늄표면에 이온빔보조증착법을 이용하여 수산화인회석을 코팅 후 소결할 때 $500^{\circ}C$의 소결온도가 수산화인회석코팅층의 결정화와 HOS (human osteosarcoma cells) 세포의 증식과 분화에 효과가 좋은 것으로 나타났다.

THE EFFECT OF SPRAYING PARAMETEES ON THE PROPERTIES OF HYDROXYAPATITE COATUNG

  • Park, K.S.;Huh, W.T.;Son, Y.H.;Kim, C.K.;Kim, S.Y.;Kim, S.G.;Kim, S.W.
    • 한국표면공학회지
    • /
    • 제29권6호
    • /
    • pp.695-702
    • /
    • 1996
  • Plasma spraying process was employed to produce HA coating on Ti6A14V alloy for the development of a dental implant. The goal of this research was to find optimum spraying conditions for HA coating on Ti6Al4V. This study was thus designed carefully to evaluate how spraying parameters affect various physical properties of a HA coating layer, such as phase composition and bond strength. In plasma spraying, spraying parameters such as hydrogen flow rates and spraying distances were varied systematically to change the degree of the melting of starting HA powder in plasma jet. It was revealed that the deposition efficiency increased with increasing a hydrogen flow rate, and the bond strength between the HA-coated layer and Ti-alloy substrate increased with hydrogen flow rate, but decreased with spraying distance. Therefore, the hydrogen flow rate and the spraying distance should be carefully controlled to obtain the reasonable bond strength simultaneously.

  • PDF

양극산화처리를 통한 다공성 임플랜트 표면의 표면거칠기 증대에 대한 연구 (STUDY ON THE ENHANCING MICRO-ROUGHNESS OF POROUS SURFACED DENIAL IMPLANT THROUGH ANODIZATION)

  • 윤태호;송광엽
    • 대한치과보철학회지
    • /
    • 제44권5호
    • /
    • pp.617-627
    • /
    • 2006
  • Statement of problem: HA has been used as a coating material on Ti implants to improve osteoconductivity. However. it is difficult to form uniform HA coatings on implants with complex surface geometries using a plasma spraying technique. Purpose : To determine if Ti6Al4V sintered porous-surfaced implants coated with HA sol-gel coated and hydrothermal treated would accelerate osseointegration. Materials and Methods : Porous implants which were made by electric discharge were used in this study. Implants were anodized and hydrothermal treatment or HA sol-gel coating was performed. Hydrothermal treatment was conducted by high pressure steam at $300^{\circ}C$ for 2 hours using a autoclave. To make a HA sol, triethyl phosphite and calcium nitrate were diluted and dissolved in anhydrous ethanol and mixed. Then anodized implant were spin-coated with the prepared HA sols and heat treated. Samples were soaked in the Hanks solution with pH 7.4 at $37^{\circ}C$ for 6 weeks. The microstructure of the specimens was observed with a scanning electron microscope (SEM), and the composition of the surface layer was analyzed with an energy dispersive spectroscope (EDS). Results : The scanning electron micrographs of HA sol-gel coated and hydrothermal treated surface did not show any significant change in the size or shape of the pores. After immersion in Hanks' solution the precipitated HA crystals covered macro- and micro-pores The precipitated Ca and P increased in Hanks' solution that surface treatment caused increased activity. Conclusion : This study shows that sol-gel coated HA and hydrothermal treatment significantly enhance the rate of HA formation due to the altered surface chemistry.