• Title/Summary/Keyword: H2 evolution

Search Result 658, Processing Time 0.029 seconds

A SIMPLE DISK-HALO MODEL FOR THE CHEMICAL EVOLUTION OF OUR GALAXY

  • Lee, S.W.;Ann, H.B.
    • Journal of The Korean Astronomical Society
    • /
    • v.14 no.2
    • /
    • pp.55-71
    • /
    • 1981
  • On the basis of observational constraints, particularly the relationship between metal abundance and cumulative stellar mass, a simple two-zone disk-halo model for the chemical evolution of our Galaxy was investigated, assuming different chemical processes in the disk and halo and the infall rates of the halo gas defined by the halo evolution. The main results of the present model calculations are: (i) The halo formation requires more than 80% of the initial galactic mass and it takes a period of $2{\sim}3{\times}10^9$ yrs. (ii) The halo evolution is divided into two phases, a fast collapse phase ($t=2{\sim}3{\times}10^8$ yrs) during which period most of the halo stars $({\sim}95%)$ are formed and a later slow collapse phase which is characterized by the chemical enrichment due to the inflow of external matter to the halo. (iii) The disk evolution is also divided into two phases, an active disk formation phase with a time-dependent initial mass function (IMF) up to $t{\approx}6{\times}10^9$ yrs and a later steady slow formation phase with a constant IMF. It is found that at the very early time $t{\approx}5{\times}10^8$ yrs, the metal abundance in the disk is rapidly increased to ${\sim}1/3$ of the present value but the total stellar mass only to ${\sim}10%$ of the present value, finally reaching about 80% of the present values toward the end of the active formation phase.

  • PDF

Platinum Decoration of a 3D Oxidized Graphitic Carbon Nitride/Graphene Aerogel for Enhanced Visible-Light Photocatalytic Hydrogen Evolution

  • Thi Kieu Oanh Nguyen;Thanh Truong Dang;Tahereh Mahvelati-Shamsabadi;Jin Suk Chung
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.627-634
    • /
    • 2023
  • Graphitic carbon nitride (g-C3N4) has attracted considerable attention since its discovery for its catalysis of water splitting to hydrogen and oxygen under visible light irradiation. However, pristine g-C3N4 confers only low photocatalytic efficiency and requires surface cocatalysts to reach moderate activity due to a lack of accessible surface active sites. Inspired by the high specific surface area and superior electron transfer of graphene, we developed a strongly coupled binary structure of graphene and g-C3N4 aerogel with 3D porous skeleton. The as-prepared 3D structure photocatalysts achieve a high surface area that favors efficient photogenerated charge separation and transfer, enhances the light-harvesting efficiency, and significantly improves the photocatalytic hydrogen evolution rate as well. The photocatalyst performance is observed to be optimized at the ratio 3:7 (g-C3N4:GO), leading to photocatalytic H2 evolution of 16125.1 mmol. g-1. h-1 under visible light irradiation, more than 161 times higher than the rate achieved by bulk g-C3N4.

Microstructural evolution in liquid-phase sintered $\alpha$-silicon carbide (액상소결 $\alpha$형 탄화규소의 미세구조 변화)

  • 이종국;강현희;박종곤;이은구
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.2
    • /
    • pp.324-331
    • /
    • 1998
  • After the addition of yttrium aluminum garnet of 2, 5, 10 mol% as a sintering aid, $\alpha$-silicon carbides were prepared by a liquid-phase sintering at $1850^{\circ}C$, and the microstructural evolution was investigated during sintering as functions of liquid-phase amount and sintering time. The highest apparent density in each compositions was obtained in specimens sintered for 2 h, and the percentage of weight loss increased with sintering time. By increasing the amount of sintering aid (yttrium aluminum garnet), the rate of grain growth during sintering decreased, but the apparent density of sintered body increased. The phase transformation from 6H-SiC to 4H-SiC was partially observed in specimens sintered for a long time, and so, a few rod-like grains were observed.

  • PDF

Computer Simulation of Recrystallization and Grain Growth during Hot Forging Process of Waspaloy (Waspaloy의 열간 단조 공정중 재결정 거동과 결정립 성장에 대한 유한요소해석)

  • Kang, G.P.;Lee, K.H.;Lee, S.U.
    • Transactions of Materials Processing
    • /
    • v.17 no.2
    • /
    • pp.113-116
    • /
    • 2008
  • Computer simulation of microstructure evolution during hot forging process is of great interest in recent years. Recrystallization model and grain growth model which use a phenomenological approach were summarized. The upsetting and cogging processes of waspaloy were simulated using $DEFORM^{TM}$ and the change in grain size were investigated in each deformation procedure.

A Scheme of Standard M2M and FIPA based Agent Communication in M2M Environment (M2M(Machine to Machine) 모델 표준화 개요 및 M2M 환경에서의 FIPA 기반 Agent 간 통신에 대한 연구)

  • Kim D.H.;Song J.Y.;Lee S.W.;Lim S.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1887-1892
    • /
    • 2005
  • In the future, a machine-tool will be more improved in the form of a knowledge evolution based device. In order to develop the knowledge evolution based machine-tool, this paper proposes the structure of standard M2M(Machine To Machine) and the scheme of agent communication in environment. The communication agent such as dialogue agent has a role of interfacing with another machine for cooperation. To design of the communication agent module in M2M environment, FIPA(Foundation of Intelligent Physical Agent) and ping agent based on JADE(Java Agent Development Framework) or FIPA-OS(Open Source) are analyzed in this study. Through this, it is expected that the agent communication can be more efficiently designed and the knowledge evolution based machine-tool can be hereafter more easily implemented.

  • PDF

IMPACT OF NEIGHBORS IN SDSS GALAXY PAIRS

  • MOON, JUN-SUNG;YOON, SUK-JIN
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.469-471
    • /
    • 2015
  • How galaxies are affected by their neighboring galaxies during galaxy-galaxy interactions is a long-standing question. We investigate the role of neighbors in galaxy pairs based on the SDSS data release 7 and the KIAS value-added galaxy catalog. Three groups of galaxies are identified: (a) galaxies with an early-type neighbor, (b) with a late-type neighbor, and (c) isolated ones with no neighbor. We compare their UV + optical colors and $H{\alpha}$ emission as indicators of the recent star-formation rate (SFR). Given that galaxies show systematic differences in SFR as functions of morphology, luminosity, and large-scale environments, we construct a control sample in which the galaxies have the same conditions (in terms of morphology, luminosity, and large-scale environment) except for the neighbor's properties (i.e., morphology, mass, and distance). The results are as follows. (1) Galaxies with a late-type companion demonstrate more enhanced SFR than those with an early-type companion. (2) Galaxies with an early-type neighbor show NUV- and u-band derived SFRs that are even lower than that of isolated galaxies, while they have similar or slightly higher $H{\alpha}$-based SFR compared to isolated ones.

Research and Development Trends in Seawater Electrolysis Systems and Catalysts (해수 수전해 시스템 및 촉매 연구 개발 동향)

  • Yoonseong Jung;Tuan Linh Doan;Ta Nam Nguyen;Taekeun Kim
    • Applied Chemistry for Engineering
    • /
    • v.34 no.6
    • /
    • pp.567-575
    • /
    • 2023
  • Water electrolysis is undergoing active research as one of the promising technologies for producing effective green hydrogen. Using seawater directly as a raw material for a water electrolysis system can solve the problem of the limitations of existing freshwater raw materials, as seawater accounts for approximately 97% of the water on Earth. At the same time, abundant by-product materials can be obtained, representative examples of which are Cl2, ClO-, Br2, and Mg(OH)2 produced during electrolysis, depending on their composition and pH environment. In order to develop a successful seawater electrolysis system and oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) catalysts, it is necessary to understand the causes and consequences of reactions that occur in the seawater environment. Therefore, in this paper, we will investigate the reaction mechanism and characteristics of the seawater electrolysis system as well as the research and development trends of electrochemical catalysts used in anode and cathode electrodes.

IS CALCIUM II TRIPLET A GOOD METALLICITY INDICATOR OF GLOBULAR CLUSTERS IN EARLY-TYPE GALAXIES?

  • CHUNG, CHUL;YOON, SUK-JIN;LEE, SANG-YOON;LEE, YOUNG-WOOK
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.489-490
    • /
    • 2015
  • We present population synthesis models for the calcium II triplet (CaT), currently the most popular metallicity indicator, based on high-resolution empirical spectral energy distributions (SEDs). Our new CaT models, based on empirical SEDs, show a linear correlation below [Fe/H] ~ -0.5, but the linear relation breaks down in the metal-rich regime by converging to the same equivalent width. This relation shows good agreement with the observed CaT of globular clusters (GCs) in NGC 1407 and the Milky Way. However, a model based on theoretical SEDs does not show this feature of the CaT and fails to reproduce observed GCs in the metal-rich regime. This linear relation may cause inaccurate metallicity determination for metal-rich stellar populations. We have also confirmed that the effect of horizontal-branch stars on the CaT is almost negligible in models based on both empirical and theoretical SEDs. Our new empirical model may explain the difference between the color distributions and CaT distributions of GCs in various early-type galaxies. Based on our model, we claim that the CaT is not a good metallicity indicator for simple stellar populations in the metal-rich regime.

Globular clusters with multiple red giant branches: Narrow-band calcium photometry

  • Han, Sang-Il;Lee, Young-Wook;Joo, Seok-Joo;Lim, Dongwook
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.74.1-74.1
    • /
    • 2013
  • We have performed new narrow-band calcium photometry for Milky Way globular clusters (GCs) and detected multiple red giant branches (RGBs) in some massive GCs. Our new calcium filter was designed to avoid the CN contamination below $3883{\AA}$ and to measure only Ca II H&K lines. The fact that we are detecting multiple RGBs from the new filter is suggesting that they are indeed different in calcium abundance, which can only be produced by supernovae (SNe). Therefore, the presence of the multiple RGBs for the peculiar GCs in the calcium photometry is best understood if the later generation of stars are enhanced in some SNe products. In this talk, we will present our progress in the calcium photometry for the peculiar GCs showing the multiple RGBs.

  • PDF

THE DYNAMICAL EVOLUTION OF GLOBULAR CLUSTERS WITH STELLAR MASS LOSS

  • Kim, Chang-Hwan;Chun, Mun-Suk;Min, Kyung-W.
    • Journal of Astronomy and Space Sciences
    • /
    • v.8 no.1
    • /
    • pp.11-23
    • /
    • 1991
  • The dynamical evolution of globular clusters is studied using the orbit-averaged multicomponent Fokker-Planck equation. The original code developed by Cohn(1980) is modi-fied to include the effect of stellar evolutions. Plommer's model is chosen as the initial density distribution with the initial mass function index $\alpha$=0.25, 0.65, 1.35, 2.35, and 3.35. The mass loss rate adopted in this work follows that of Fusi-Pecci and Renzini(1976). The stellar mass loss acts as the energy source, and thus affects the dynamical evolution of globular clusters by slowing down the evolution rate and extending the core collapse time Tcc. And the dynamical length scale $$R_c, $$R_h is also extended. This represents the expansion of cluster due to the stellar mass loss.

  • PDF