• Title/Summary/Keyword: H2 Plasma

Search Result 2,270, Processing Time 0.037 seconds

Effect of Green Tea By-product on Performance and Body Composition in Broiler Chicks

  • Yang, C.J.;Yang, I.Y.;Oh, D.H.;Bae, I.H.;Cho, S.G.;Kong, I.G.;Uuganbayar, D.;Nou, I.S.;Choi, K.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.6
    • /
    • pp.867-872
    • /
    • 2003
  • This experiment was conducted to determine the optimum level of green tea by-product (GTB) in diets without antibiotics and to evaluate its effect on broiler performances. A total of 140 Ross broilers were kept in battery cages for a period of 6 weeks. Dietary treatments used in this experiment were antibiotic free group (basal diet as a control), antibiotic added group (basal+0.05% chlortetracycline), GTB 0.5% (basal+GTB 0.5%), GTB 1% (basal+GTB 1%) and GTB 2% (basal+GTB 2%). Antibiotic added group showed significantly higher body weight gain than other treatments (p<0.05). However, no significant differences were observed in feed intake and feed efficiency among treatments (p>0.05). The addition of green tea by-product to diets tended to decrease blood LDL cholesterol content compared to control group although there were no significant differences among treatments (p>0.05). Addition of green tea by-product increased docosahexaenoic acid (DHA) in blood plasma and tended to decrease cholesterol content in chicken meat, but a significant difference was not observed (p>0.05). The values of TBA in chicken meat decreased in groups fed diets with green tea-by product and antibiotics compared to control group (p<0.05). The crude protein content in chicken meat was decreased slightly in treatments with green tea by-product and antibiotics supplementation. The abdominal fat was increased in chickens fed with diets with green tea by-product compared to the control (p<0.05).

METHODS TO IMPROVE UTILIZATION OF RICE STRAW III. EFFECT OF UREA AMMONIA TREATMENT AND UREA MOLASSES BLOCKS SUPPLEMENTATION ON INTAKE, DIGESTIBILITY, RUMEN AND BLOOD PARAMETERS

  • Badurdeen, A.L.;Ibrahim, M.N.M.;Ranawana, S.S.E.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.7 no.3
    • /
    • pp.363-372
    • /
    • 1994
  • In two separate experiments with crossbred bulls (Sahiwal $\times$ indigenous) the effect of access to a urea-molasses lickblock (MOL-U-MIN) on straw diets was studied. The animals were given either untreated (US) or urea treated (TS) rice straw with or without lickblock supplementation. In experiment 1, individual dry matter intake (DMI) and dry matter digestibility (DMD) were measured, while in experiment 2 in addition to the above rumen (pH, ammonia, minerals) and blood (protein, minerals and haemotological) parameters were also measured. With both experiments urea treatment did not effect DMI, but lickblock supplementation significantly (p < 0.05) increased DMI. The DMD values obtained in both experiments for TS were significantly (p < 0.05) higher than for US, but lickblock supplementation did not effect the DMD of either US or TS fed animals. Both urea treatment (6.97 vs 6.93) and lickblock supplementation (6.98 vs 6.92) significantly (p < 0.001) reduced the rumen pH. Urea treatment and lickblock supplementation increased the rumcn $NH_3-N$ concentration (mg/100 ml) from 8.7 to 11.9 and 9.2 to 11.4, respectively. Both US and TS diets fed with or without lickblock increased the molar ratio of Na : K in saliva. Phosphorus content in blood plasma was significantly (p < 0.01) increased due to lickblock supplementation, whereas the Fc content in blood was significantly increased (p < 0.01) by urea treatment. Haemoglobin content in blood ranged from 11.3 to 11.7 g/dl, and was not influenced by urea treatment or lickblock supplementation. Lickblock significantly reduced the number of red blood cells, but increased the mean corpuscular volume. It is concluded that feeding urea treated straw with proper mineral supplementation could be a more economical alternative to lickblock supplementation.

Effects of Dietary Heat Extruded Soybean Meal and Protected Fat Supplement on the Production, Blood and Ruminal Characteristics of Holstein Cows

  • Chen, Kuen-Jaw;Jan, Der-Fang;Chiou, Peter Wen-Shyg;Yang, Der-Wei
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.6
    • /
    • pp.821-827
    • /
    • 2002
  • The purpose of this study was to evaluate the effect of protected fat and heat-extruded soybean meal on the lactation performance of Holstein cows. Twenty-four cows, consisting of 20 lactating cows and 4 rumen-fistulated dry cows, were randomly allocated into four groups with 5 lactating cows and 1 fistulated cow in each group. A replicated 4${\times}$4 Latin square design with four 21 day periods, including 14 days of adaptation and 7 collection days within each period was employed. The experiment was a 2${\times}$2 arrangement, with or without heat-extruded soybean meal and protected fat inclusion. The dietary treatments consisted of supplements of (a) soybean meal (the control), (b) heat-extruded soybean meal, (c) protected fat, and (d) heat-extruded soybean meal and protected fat. The results showed that there were no significant differences in feed intake, milk yield, milk protein content, milk lactose content and body weight change between the dietary treatments. However, cows supplemented with protected fat showed a significantly increased (p<0.05) milk fat yield, 3.5% FCM and total solid yield. The increase in undegradable intake protein (UIP) via heat extruded soybean meal supplement significantly decreased the urea nitrogen concentration in the blood (p<0.05). Dietary fat inclusion significantly increased the blood cholesterol concentration (p<0.01) and decreased the ruminal pH value (p<0.01). Increased dietary UIP significantly decreased the ammonia nitrogen concentration in the rumen (p<0.01), but did not significantly influence the pH and VFA molar percentage in the rumen. It appears that dietary protected fat inclusion could improve milk fat and solid content. Increased dietary undegradable intake protein through heat extruded soybean meal did not improve milk yield. But it could alleviate the adverse effect of decreased milk protein due to dietary fat supplementation. Increased UIP could also decrease the ammonia nitrogen concentration in the rumen and plasma urea nitrogen concentration in the blood.

Advanced Low-k Materials for Cu/Low-k Chips

  • Choi, Chi-Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.71-71
    • /
    • 2012
  • As the critical dimensions of integrated circuits are scaled down, the line width and spacing between the metal interconnects are made smaller. The dielectric film used as insulation between the metal lines contributes to the resistance-capacitance (RC) time constant that governs the device speed. If the RC time delay, cross talk and lowering the power dissipation are to be reduced, the intermetal dielectric (IMD) films should have a low dielectric constant. The introduction of Cu and low-k dielectrics has incrementally improved the situation as compared to the conventional $Al/SiO_2$ technology by reducing both the resistivity and the capacitance between interconnects. Some of the potential candidate materials to be used as an ILD are organic and inorganic precursors such as hydrogensilsequioxane (HSQ), silsesquioxane (SSQ), methylsilsisequioxane (MSQ) and carbon doped silicon oxide (SiOCH), It has been shown that organic functional groups can dramatically decrease dielectric constant by increasing the free volume of films. Recently, various inorganic precursors have been used to prepare the SiOCH films. The k value of the material depends on the number of $CH_3$ groups built into the structure since they lower both polarity and density of the material by steric hindrance, which the replacement of Si-O bonds with Si-$CH_3$ (methyl group) bonds causes bulk porosity due to the formation of nano-sized voids within the silicon oxide matrix. In this talk, we will be introduce some properties of SiOC(-H) thin films deposited with the dimethyldimethoxysilane (DMDMS: $C_4H_{12}O_2Si$) and oxygen as precursors by using plasma-enhanced chemical vapor deposition with and without ultraviolet (UV) irradiation.

  • PDF

Biocompatibility and Surface Characteristics of PEO-treated Ti-40Ta-xZr Alloys for Dental Implant Materials

  • Yu, Ji-Min;Cho, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.23-23
    • /
    • 2018
  • In this study, new titanium alloys were prepared by adding elements such as tantalum (Ta), zirconium (Zr) and the like to complement the biological, chemical and mechanical properties of titanium alloys. The Ti-40Ta-xZr ternary alloy was formed on the basis of Ti-40Ta alloy with the contents of Zr in the contents of 0, 3, 7 and 15 wt. %. Plasma electrolytic oxidation (PEO), which combines high-voltage sparks and electrochemical oxidation, is a novel method to form ceramic coatings on light metals such as Ti and its alloys. These oxide film produced by the electrochemical surface treatment is a thick and uniform porous form. It is also composed of hydroxyapatite and calcium phosphate-based phases, so it has the characteristics of bone inorganic, non-toxic and very high bioactivity and biocompatibility. Ti-40Ta-xZr alloys were homogenized in an Ar atmosphere at $1050^{\circ}C$ for 1 hour and then quenched in ice water. The electrochemical oxide film was applied by using a power supply of 280 V for 3 minutes in 0.15 M calcium acetate monohydrate ($Ca(CH_3COO)_2{\cdot}H_2O$) and 0.02 M calcium glycerophosphate ($C_3H_7CaO_6P$) electrolyte. A small amount of 0.0075M zinc acetate and magnesium acetate were added to the electrolyte to enhance the bioactivity. The mechanical properties of the coated surface of Ti-40Ta-xZr alloys were evaluated by Vickers hardness, roughness test, and elastic modulus using nano-indentation, and the surface wettability was evaluated by measuring the contact angle of the coated surface. In addition, cell activation and differentiation were examined by cell culture of HEK 293 (Human embryonic kidney 293) cell proliferation. Surface properties of the alloys were analyzed by scanning electron microscopy(FE-SEM), EDS, and X-ray diffraction analysis (XRD).

  • PDF

Synthesis and Oxidative Catalytic Property of Ruthenium-doped Titanate Nanosheets (루테늄이 도입된 티타네이트 나노시트의 합성 및 산화 촉매 활성 연구)

  • Lee, Yoonhee;Kwon, Ki-Young
    • Applied Chemistry for Engineering
    • /
    • v.28 no.5
    • /
    • pp.593-596
    • /
    • 2017
  • Sodium titanate nanosheets were prepared by a hydrothermal synthesis method under basic conditions. Ruthenium was introduced on the surface of sodium titanate nanosheets through an UV irradiation in the aqueous $RuCl_3$ solution. The crystal phase and morphology of synthesized samples were analyzed by X-ray diffraction, transmission electron microscopy and energy dispersive spectroscopy. In addition, the content of Ru was evaluated by inductively coupled plasma. It was proposed that a monomeric form of ruthenium was incorporated on the surface of sodium titanate. Ruthenium incorporated sodium titanates were applied to alcohol oxidation using molecular oxygen as an oxidant. The sample with 7% ruthenium showed a catalytic activity with a turnover frequency value of $2.1h^{-1}$ in oxidizing benzyl alcohol to benzaldehyde without any other byproducts at $105^{\circ}C$ and 1 atmosphere.

Enhancement of 1,3-Dihydroxyacetone Production from Gluconobacter oxydans by Combined Mutagenesis

  • Lin, Xi;Liu, Sha;Xie, Guangrong;Chen, Jing;Li, Penghua;Chen, Jianhua
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.11
    • /
    • pp.1908-1917
    • /
    • 2016
  • Wild strain L-6 was subjected to combined mutagenesis, including UV irradiation, atmospheric and room temperature plasma, and ion beam implantation, to increase the yield of 1,3-dihydroxyacetone (DHA). With application of a high-throughput screening method, mutant Gluconobacter oxydans I-2-239 with a DHA productivity of 103.5 g/l in flask-shake fermentation was finally obtained with the starting glycerol concentration of 120 g/l, which was 115.7% higher than the wild strain. The cultivation time also decreased from 54 h to 36 h. Compared with the wild strain, a dramatic increase in enzyme activity was observed for the mutant strain, although the increase in biomass was limited. DNA and amino acid sequence alignment revealed 11 nucleotide substitutions and 10 amino acid substitutions between the sldAB of strains L-6 and I-2-239. Simulation of the 3-D structure and prediction of active site residues and PQQ binding site residues suggested that these mutations were mainly related to PQQ binding, which was speculated to be favorable for the catalyzing capacity of glycerol dehydrogenase. RT-qPCR assay indicated that the transcription levels of sldA and sldB in the mutant strain were respectively 4.8-fold and 5.4-fold higher than that in the wild strain, suggesting another possible reason for the increased DHA productivity of the mutant strain.

Effect of Amino Acids Addition on Stability and Antioxidative Property of Anthocyanins (아미노산의 첨가가 anthocyanins 색소의 안정성과 항산화능력에 미치는 영향)

  • Oh, Ju-Kyoung;Imm, Jee-Young
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.562-566
    • /
    • 2005
  • Effects of amino acids (Arg, Lys, Gly, Ile, Glu, Asp, and Met) on the color intensity, stability and antioxidative properties of anthocyanins extracted from grape skins were investigated. Intensity of anthocyanins was significantly increased by the addition of Asp. Except for basic amino acids such as Arg and Lys, stabilities of anthocyanins were significantly improved by the addition of other amino acids including neutral, acidic and sulfur containing amino acids during the storage at $30^{\circ}C$ at pH 3.5. In case of control anthocyanins was remained unchanged the intensity of red color decreased significantly during the storage whereas their antioxidative activity were unchanged. Although effects of amino acids addition on electron donating abilities of anthocyanins were not differentiated by DPPH (2,2-diphenyl-1-picrylhydrazyl) method, the addition of Asp or Met resulted in increased ferric reducing ability which measured by FRAP (ferric reducing ability of plasma) assay.

$H_2$ plasma resistant Al-doped zinc oxide transparent conducting oxide for a-Si thin film solar cell application

  • Yu, Ha-Na;Im, Yong-Hwan;Lee, Jong-Ho;Choe, Beom-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.177-177
    • /
    • 2010
  • 고효율 비정질 실리콘 박막 태양전지 제작을 위해서는 광파장대에서 optical confinement 능력을 최대화할 수 있는 기술이 필수적이다. 효율적인 photon trapping을 위해서는 back reflector를 사용하거나 전면전극인 투명전도성막의 표면에 요철을 형성하여 포획된 태양광의 내부 반사를 증가시키거나 전면 투명전극에서 반사를 감소시켜 태양광의 travel length를 증가시키는 방법이 일반적이며, 이를 통해 흡수층의 효율을 최대화할 수 있다. 이 중 전면전극으로 사용되는 투명전도성막은 불소가 도핑된 tin-oxide가 주로 사용되었으나, 최근 들어 Al이 도핑된 산화아연막을 이용한 비정질 실리콘 박막 태양전지 개발에 대한 연구도 활발히 진행되고 있다. 투명전극 증착후 표면의 유효면적을 증가시키기 위해 염산 용액을 이용하여 표면 텍스쳐링을 수행한다. 그후 흡수층인 p-i-n 층을 플라즈마 화학기상증착법을 이용하여 형성하는 것이 일반적이다. 이때 표면처리 된 투명전극은 수소플라즈마에 대해 특성이 변하지 않아야 고효율 비정질 실리콘 박막 태양전지 제조에 적용될 수 있다. 본 연구에서는 표면처리 된 AZO 투명전극의 수소플라즈마에 의한 특성 변화에 대해 고찰하였다. 먼저 AZO 투명전극은 스퍼터링 공정을 적용하여 $1\;{\mu}m$두께로 증착하였고, 0.5 wt%의 HCl 용액을 이용하여 습식 식각을 수행하였다. 수소플라즈마 처리 조건은 $H_2$ flow rate 30 sccm, working pressure 20 mtorr, RF power 300 W, Temp $60^{\circ}C$ 이며 3분간 진행하였다. 표면형상은 수소플라즈마 전 후에는 큰 차이를 보이지 않았으며 AZO의 grain size는 각각 220 nm, 210 nm로 관찰되었다. 투명전극의 가장 중요한 특성인 가시광선 영역에서의 투과도는 수소플라즈마 처리전에는 90 % 이상의 투과도를 보였으나, 수소플라즈마 처리 후에는 85 %로 약간 저하된 특성을 보였다. 그러나 이는 박막 태양전지용 전면전극으로 사용하기 위한 투과도인 80 % 이상을 만족하는 결과로, 비정질 박막 실리콘 태양전지 제작에 사용될 수 있다. 또 하나의 중요한 특성인 Haze factor 역시 수소플라즈마 처리 전 후 모두 10 이상의 값을 나타냈다. 하지만 고효율 실리콘 박막 태양전지에 적용하기 위해서는 Haze factor를 증가시키는 공정 개발에 대한 추가 연구가 필요하다.

  • PDF

Cleaning Behavior of Aqueous Solution Containing Amine or Carboxylic Acid in Cu-interconnection Process (아민과 카르복실산이 함유된 수계용액의 구리 배선 공정의 세정특성)

  • Ko, Cheonkwang;Lee, Won Gyu
    • Korean Chemical Engineering Research
    • /
    • v.59 no.4
    • /
    • pp.632-638
    • /
    • 2021
  • With the copper interconnection in the semiconductor process, complex residues including copper oxide, fluoride, and polymeric fluorocarbon are formed by plasma etching. In this study, a cleaning solution was prepared with a component having an amine group (-NH2) and a carboxyl group (-COOH), and the characteristics of removing post-etch residues in the copper wiring process were analyzed. In the cleaning solution containing an amine group, the length of the component substituted with nitrogen and the length of the carbon chain influenced the cleaning effect, and the etching rate of copper oxide increased as the pH of the cleaning solution increased. The activity of the amine group is in the basic region, and the activity of the carboxyl group is in the acidic region, and the cleaning process proceeds through complex formation with copper or copper oxide in each region.