• 제목/요약/키워드: H1N1 virus

검색결과 271건 처리시간 0.026초

Construction of a Transcriptome-Driven Network at the Early Stage of Infection with Influenza A H1N1 in Human Lung Alveolar Epithelial Cells

  • Chung, Myungguen;Cho, Soo Young;Lee, Young Seek
    • Biomolecules & Therapeutics
    • /
    • 제26권3호
    • /
    • pp.290-297
    • /
    • 2018
  • We aimed to understand the molecular changes in host cells that accompany infection by the seasonal influenza A H1N1 virus because the initial response rapidly changes owing to the fact that the virus has a robust initial propagation phase. Human epithelial alveolar A549 cells were infected and total RNA was extracted at 30 min, 1 h, 2 h, 4 h, 8 h, 24 h, and 48 h post infection (h.p.i.). The differentially expressed host genes were clustered into two distinct sets of genes as the infection progressed over time. The patterns of expression were significantly different at the early stages of infection. One of the responses showed roles similar to those associated with the enrichment gene sets to known 'gp120 pathway in HIV.' This gene set contains genes known to play roles in preventing the progress of apoptosis, which infected cells undergo as a response to viral infection. The other gene set showed enrichment of 'Drug Metabolism Enzymes (DMEs).' The identification of two distinct gene sets indicates that the virus regulates the cell's mechanisms to create a favorable environment for its stable replication and protection of gene metabolites within 8 h.

소아에서 2009 신종 인플루엔자 A (H1N1) 바이러스 감염의 임상적 특징 (Clinical and Laboratory Finding of the 2009 Pandemic influenza A (H1N1) in Children)

  • 손유락;박수현;김원덕
    • Pediatric Infection and Vaccine
    • /
    • 제18권2호
    • /
    • pp.173-181
    • /
    • 2011
  • 목 적 : 신종 인플루엔자 A (H1N1) 바이러스는 2009년 4월 멕시코에서 처음 확인된 후 급속히 전 세계로 확산되어 국내에서도 전국적인 유행을 보였다. 저자들은 2009-2010에 소아에서 유행한 신종 인플루엔자 A (H1N1) 바이러스 감염의 임상적, 역학적 특징을 알아보고자 하였다. 방 법: 2009년 8월부터 2010년 2월까지 대구파티마병원 소아청소년과에서 신종 인플루엔자 A (H1N1) 바이러스 감염으로 확진되었던 2,781명을 대상으로 하였다. 확진은 비인두 가검물을 채취하여 중합효소 연쇄반응 검사에서 양성을 보인 경우로 하였다. 의무기록지를 후향적으로 분석하였다. 결 과: 6,786명이 RT-PCR 검사를 받았으며 그중 2,781이 양성이었다. 158명(5.7%)이 입원치료를 받았으며, 입원군의 평균연령($5.4{\pm}3.3$세)이 비입원군($7.5{\pm}3.9$세)에 비해 의미 있게 낮았다(P<0.001). 입원군 중에서 산소치료, 면역글로불린 및 스테로이드 치료, 인공호흡기 치료가 필요했던 경우는 폐렴 환자에 비해 천명음이 동반한 폐렴 환자에서 의미있게 많았으며(P=0.013), 폐렴군에서도 기관지성 폐렴에 비해 분절성, 대엽성, 간질성 혼합성, 흉수가 동반된 경우에 보다 적극적인 치료가 필요하였다(P=0.007). 확진 환자 중 1세 미만의 영아는 83명이었고 그중 71명에서 oseltamivir 처방이 이루어졌고 항바이러스제 사용으로 인한 특이한 이상 소견은 발견되지 않았다. 결 론: 2009-2010에 대유행한 A형 인플루엔자 바이러스(H1N1)는 어린 연령 군에서 더 입원치료가 더 많이 필요하였다. 천명음이 동반된 폐렴경우 그리고 분절성, 대엽성, 간질성, 혼합성 폐렴이거나 흉수가 동반된 경우는 조기에 적극적인 치료가 필요하다고 생각된다.

조류인플루엔자 바이러스의 양-반응 모형 (Dose-Response Relationship of Avian Influenza Virus Based on Feeding Trials in Humans and Chickens)

  • 박선일;이제용;전종민
    • 한국임상수의학회지
    • /
    • 제28권1호
    • /
    • pp.101-107
    • /
    • 2011
  • This study aimed to determine dose-response (DR) curve of avian influenza (AI) virus to predict the probability of illness or adverse health effects that may result from exposure to a pathogenic microorganism in a quantitative microbial risk assessment. To determine the parametric DR relationship of several strains of AI virus, 7 feeding trial data sets challenging humans (5 sets) and chickens (2 sets) for strains of H3N2 (4 sets), H5N1 (2 sets) and H1N1 (1 set) from the published literatures. Except for one data set (study with intra-tracheal inoculation for data set no. 6), all were obtained from the studies with intranasal inoculation. The data were analyzed using three types of DR model as the basis of heterogeneity in infectivity of AI strains in humans and chickens: exponential, beta-binomial and beta-Poisson. We fitted to the data using maximum likelihood estimation to get the parameter estimates of each model. The alpha and beta values of the beta-Poisson DR model ranged 0.06-0.19 and 1.7-48.8, respectively for H3N2 strain. Corresponding values for H5N1 ranged 0.464-0.563 and 97.3-99.4, respectively. For H1N1 the parameter values were 0.103 and 12.7, respectively. Using the exponential model, r (infectivity parameter) ranged from $1.6{\times}10^{-8}$ to $1.2{\times}10^{-5}$ for H3N2 and from $7.5{\times}10^{-3}$ to $4.0{\times}10^{-2}$ for H5N1, while the value was $1.6{\times}10^{-8}$ for H1N1. The beta-Poisson DR model provided the best fit to five of 7 data sets tested, and the estimated parameter values in betabinomial model were very close to those of beta-Poisson. Our study indicated that beta-binomial or beta-Poisson model could be the choice for DR modeling of AI, even though DR relationship varied depending on the virus strains studied, as indicated in prior studies. Further DR modeling should be conducted to quantify the differences among AI virus strains.

Development of reverse-transcription loop-mediated isothermal amplification assays for point-of-care testing of human influenza virus subtypes H1N1 and H3N2

  • Ji-Soo Kang;Mi-Ran Seo;Yeun-Jun Chung
    • Genomics & Informatics
    • /
    • 제20권4호
    • /
    • pp.46.1-46.7
    • /
    • 2022
  • Influenza A virus (IAV) is the most widespread pathogen causing human respiratory infections. Although polymerase chain reaction (PCR)-based methods are currently the most commonly used tools for IAV detection, PCR is not ideal for point-of-care testing. In this study, we aimed to develop a more rapid and sensitive method than PCR-based tools to detect IAV using loop-mediated isothermal amplification (LAMP) technology. We designed reverse-transcriptional (RT)-LAMP primers targeting the hemagglutinin gene. RNAs from reference H1N1 and H3N2 showed specific RT-LAMP signals with the designed primers. We optimized the reaction conditions and developed universal reaction conditions for both LAMP assays. Under these conditions, the detection limit was 50 copies for both RT-LAMP assays. There was no non-specific signal to 19 non-IAV respiratory viruses, such as influenza B virus, coronaviruses, and respiratory syncytial viruses. Regarding the reaction time, a positive signal was detected within 25 min after starting the reaction. In conclusion, our RT-LAMP assay has high sensitivity and specificity for the detection of the H1 and H3 subtypes, making it suitable for point-of-care IAV testing.

The 2009 H1N1 Pandemic Influenza in Korea

  • Kim, Jae Yeol
    • Tuberculosis and Respiratory Diseases
    • /
    • 제79권2호
    • /
    • pp.70-73
    • /
    • 2016
  • In late March of 2009, an outbreak of influenza in Mexico, was eventually identified as H1N1 influenza A. In June 2009, the World Health Organization raised a pandemic alert to the highest level. More than 214 countries have reported confirmed cases of pandemic H1N1 influenza A. In Korea, the first case of pandemic influenza A/H1N1 infection was reported on May 2, 2009. Between May 2009 and August 2010, 750,000 cases of pandemic influenza A/H1N1 were confirmed by laboratory test. The H1N1-related death toll was estimated to reach 252 individuals. Almost one billion cases of influenza occurs globally every year, resulting in 300,000 to 500,000 deaths. Influenza vaccination induces virus-neutralizing antibodies, mainly against hemagglutinin, which provide protection from invading virus. New quadrivalent inactivated influenza vaccine generates similar immune responses against the three influenza strains contained in two types of trivalent vaccines and superior responses against the additional B strain.

뉴스초점 - 신종플루(H1N1)의 교훈 (A Lesson in Swine Fever)

  • 주승환
    • 기술사
    • /
    • 제42권6호
    • /
    • pp.42-46
    • /
    • 2009
  • Every year influenza contributes to the death of 72 people in the South korea, 20,000 in the U.S. and perhaps millions worldwide. The swine fever so-called the noble flu A H1N1, a strain of the flu virus, which jumped species and burst into the human population in March and April of this year. The outbreak of 2009 novel H1N1 was the fourth in 100 years. Fortunately, it led to today's comparatively tame swine flu than the vicious 1918, which was original H1N1 pandemic flu virus, killed at least 40 million worldwide in an ongoing pandemic era. Although the 2009 H1N1 which is still in full swing, this global flu epidemic is already teaching scientists valuable lessons about pandemics. Evidence accumulated these days indicates that the 2009 H1N1 was not entirely new to all human immune systems. This article introduces only an outline for our better understanding the basic mechanisms of influenza and the vaccination about longstanding fears of that worst-case scenario engendered pandemic that are paying off today.

  • PDF

Screening of Antiviral Medicinal Plants against Avian Influenza Virus H1N1 for Food Safety

  • Lee, Jang-Hyun;Van, Nguyen Dinh; Ma, Jin-Yeul;Kim, Young-Bong;Kim, Soo-Ki;Paik, Hyun-Dong
    • 한국축산식품학회지
    • /
    • 제30권2호
    • /
    • pp.345-350
    • /
    • 2010
  • Various extracts from 30 medicinal plants were evaluated for their antiviral activity against influenza virus A/Puerto Rico/8/34 (H1N1) and cytotoxicity in MDCK cell culture. The plant material (30 g) was extracted with methanol (300 mL) at room temperature for 24 h, after which the methanolic extracts were filtered, evaporated, and subsequently lyophilized. Evaluation of the potential antiviral activity was conducted by a viral replication inhibition test. Among these medicinal plants, Tussilago farfara, Brassica juncea, Prunus armeniaca, Astragalus membranaceus, Patrinia villosa, and Citrus unshiu showed marked antiviral activity against influenza virus A/H1N1 at concentrations ranging from 0.15625 mg/mL to 1.25 mg/mL, 0.3125 mg/mL to 10 mg/mL, 5 mg/mL to 10 mg/mL, 0.625 mg/mL to 10 mg/mL, 0.625 mg/mL to 10 mg/mL, and 0.3125 mg/mL to 5 mg/mL, respectively. The extracts of Tussilago farfara showed cytotoxicity at concentrations greater than 2.5 mg/mL, whereas the other five main extracts showed no cytotoxicity at concentrations of 10 mg/mL. Taken together, the present results indicated that methanolic extracts of the six main plants might be useful for the treatment of influenza virus H1N1.

Comparison of Molecular Assays for the Rapid Detection and Simultaneous Subtype Differentiation of the Pandemic Influenza A (H1N1) 2009 Virus

  • Lee, Mi Kyung;Kim, Hye Ryoun
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권8호
    • /
    • pp.1165-1169
    • /
    • 2012
  • In April 2009, the H1N1 pandemic influenza virus emerged as a novel influenza virus. The aim of this study was to compare the performances of several molecular assays, including conventional reverse transcription polymerase chain reaction (RT-PCR), two real-time reverse transcription (rRT)-PCRs, and two multiplex RTPCRs. A total of 381 clinical specimens were collected from patients (223 men and 158 women), and both the Seeplex RV7 assay and rRT-PCR were ordered on different specimens within one week after collection. The concordance rate for the two methods was 87% (332/381), and the discrepancy rate was 13% (49/381). The positive rates for the molecular assays studied included 93.1% for the multiplex Seeplex RV7 assay, 93.1% for conventional reverse transcription (cRT)-PCR, 89.7% for the multiplex Seeplex Flu ACE Subtyping assay, 82.8% for protocol B rRT-PCR, and 58.6% for protocol A rRT-PCR. Our results showed that the multiplex Seeplex assays and the cRT-PCR yielded higher detection rates than rRT-PCRs for detecting the influenza A (H1N1) virus. Although the multiplex Seeplex assays had the advantage of simultaneous detection of several viruses, they were time-consuming and troublesome. Our results show that, although rRT-PCR had the advantage, the detection rates of the molecular assays varied depending upon the source of the influenza A (H1N1)v virus. Our findings also suggest that rRT-PCR sometimes detected virus in extremely low abundance and thus required validation of analytical performance and clinical correlation.

Molecular Characterization of an H5N3 Influenza Virus Isolated from Spot-Billed Duck

  • Lee, Jin Hwa;Kwon, Hyuk Moo;Sung, Haan Woo
    • 한국가금학회지
    • /
    • 제40권3호
    • /
    • pp.243-252
    • /
    • 2013
  • Among the 16 hemagglutinin (HA) subtypes of avian influenza virus (AIV), only the H5 and H7 subtypes have caused highly pathogenic avian influenza (HPAI) in poultry. However, most H5 or H7 subtype viruses are categorized as low pathogenic avian influenza (LPAI). Some AIVs, including the H5 and H7 HPAI viruses, have shown the ability to infect humans directly. In this study, we describe the biological and molecular characterization of an H5N3 AIV (SBD/KR/KNU SYG06/06) isolated from spot-billed duck (Anas poecilorhyncha) in Korea. A phylogenetic analysis of the eight viral genes showed that the SBD/KR/KNU SYG06/06 isolate belongs to the Eurasian lineage and that the SBD/KR/KNU SYG06/06 isolate was clearly different from HPAI H5N1 strains, including human isolates and the Italian HPAI H5N2 strains. Additionally, no relationship was found between SBD/KR/KNU SYG06/06 and the Korean HPAI H5N1 isolates. The SBD/KR/ KNU SYG06/06 isolate had avian specific receptor binding site residues in the HA protein and the four C-terminal amino acids in the NS1 protein. The HA protein of the SBD/KR/KNU SYG06/06 isolate exhibited the typical LPAI motif at the cleavage site and this virus produced no cytopathic effects in MDCK cells without trypsin. Given these results, we suggest that the H5N3 AIV isolated from the spot-billed duck should be considered an LPAI virus and should have no pathogenic effect in humans.

Seroprevalence of swine influenza and porcine reproductive and respiratory syndrome in Korea

  • Jeong, Kwang;Park, Young-Il;Jin, Wen;Han, Jeong-Hee
    • 한국동물위생학회지
    • /
    • 제30권2호
    • /
    • pp.197-203
    • /
    • 2007
  • A total of 501 serum samples were selected from blood samples that were submitted to Department of Veterinary Pathology, Kangwon National University from all provinces in Korea from September 2001 to August 2002. Their sera were examined for antibodies to swine influenza virus subtype H1N1 (SlV H1N1) and porcine repro-ductive and respiratory syndrome virus (PRRSV) according to the age of pig, season, and herd size using enzyme-linked immunosorbent assay. The seroprevalence of SIV H1N1, PRRSV, and dual infection were 39.12%, 61.48%, and 25.95%, respectively. The seroprevalence of SIV H1N1 according to herd size was not significant differences (p>0.05). The results showed that the PRRSV infection spread widely in swine herds throughout the country.