DOI QR코드

DOI QR Code

Molecular Characterization of an H5N3 Influenza Virus Isolated from Spot-Billed Duck

  • Lee, Jin Hwa (College of Veterinary Medicine, Kangwon National University) ;
  • Kwon, Hyuk Moo (College of Veterinary Medicine, Kangwon National University) ;
  • Sung, Haan Woo (College of Veterinary Medicine, Kangwon National University)
  • Received : 2013.08.26
  • Accepted : 2013.09.17
  • Published : 2013.09.30

Abstract

Among the 16 hemagglutinin (HA) subtypes of avian influenza virus (AIV), only the H5 and H7 subtypes have caused highly pathogenic avian influenza (HPAI) in poultry. However, most H5 or H7 subtype viruses are categorized as low pathogenic avian influenza (LPAI). Some AIVs, including the H5 and H7 HPAI viruses, have shown the ability to infect humans directly. In this study, we describe the biological and molecular characterization of an H5N3 AIV (SBD/KR/KNU SYG06/06) isolated from spot-billed duck (Anas poecilorhyncha) in Korea. A phylogenetic analysis of the eight viral genes showed that the SBD/KR/KNU SYG06/06 isolate belongs to the Eurasian lineage and that the SBD/KR/KNU SYG06/06 isolate was clearly different from HPAI H5N1 strains, including human isolates and the Italian HPAI H5N2 strains. Additionally, no relationship was found between SBD/KR/KNU SYG06/06 and the Korean HPAI H5N1 isolates. The SBD/KR/ KNU SYG06/06 isolate had avian specific receptor binding site residues in the HA protein and the four C-terminal amino acids in the NS1 protein. The HA protein of the SBD/KR/KNU SYG06/06 isolate exhibited the typical LPAI motif at the cleavage site and this virus produced no cytopathic effects in MDCK cells without trypsin. Given these results, we suggest that the H5N3 AIV isolated from the spot-billed duck should be considered an LPAI virus and should have no pathogenic effect in humans.

Keywords

References

  1. Banks J, Speidel ES, Moore E, Plowright L, Piccirillo A, Capua I, Cordioli P, Fioretti A, Alexander DJ 2001 Changes in the haemagglutinin and the neuraminidase genes prior to the emergence of highly pathogenic H7N1 avian influenza viruses in Italy. Arch Virol 146:963-973. https://doi.org/10.1007/s007050170128
  2. Campitelli L, Mogavero E, De Marco MA, Delogu M, Puzelli S, Frezza F, Facchini M, Chiapponi C, Foni E, Cordioli P, Webby R, Barigazzi G, Webster RG, Donatelli I 2004 Interspecies transmission of an H7N3 influenza virus from wild birds to intensively reared domestic poultry in Italy. Virology 323:24-36. https://doi.org/10.1016/j.virol.2004.02.015
  3. Chen GW, Chang SC, Mok CK, Lo YL, Kung YN, Huang JH, Shih YH, Wang JY, Chiang C, Chen CJ, Shih SR 2006 Genomic signatures of human versus avian influenza A viruses. Emerg Infect Dis 12:1353-1360. https://doi.org/10.3201/eid1209.060276
  4. Chen W, Calvo PA, Malide D, Gibbs J, Schubert U, Bacik I, Basta S, O'Neill R, Schickli J, Palese P, Henklein P, Bennink JR, Yewdell JW 2001 A novel influenza A virus mitochondrial protein that induces cell death. Nat Med 7:1306-1312. https://doi.org/10.1038/nm1201-1306
  5. Cheung CL, Rayner JM, Smith GL, Wang P, Naipospos TS, Zhang J, Yuen KY, Webster RG, Peiris JS, Guan Y, Chen H 2006 Distribution of amantadine-resistant H5N1 avian influenza variants in Asia. J Infect Dis 193:1626-1629. https://doi.org/10.1086/504723
  6. Duan L, Campitelli L, Fan XH, Leung YH, Vijaykrishna D, Zhang JX. Donatelli I, Delogu M, Li KS, Foni E, Chiapponi C, Wu WL, Kai H, Webster RG, Shortridge KF, Peiris JS, Smith GJ, Chen H, Guan Y 2007 Characterizaion of low-pathogenic H5 subtype influenza viruses from Eurasia: Implications for the origin of highly pathogenic H5N1 viruses. J Virol 81:7529-739. https://doi.org/10.1128/JVI.00327-07
  7. Fouchier RA, Munster V, Wallensten A, Bestebroer TM, Herfst S, Smith D, Rimmelzwaan GF, Olsen B, OsterhausAD 2005 Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls. J Virol 79:2814-2822. https://doi.org/10.1128/JVI.79.5.2814-2822.2005
  8. Hayden FG 2006 Antivirals for influenza: historical perspectives and lessons learned. Antiviral Res 71:372-378. https://doi.org/10.1016/j.antiviral.2006.05.016
  9. Hoffmann E, Stech J, Guan Y, Webwter RG, Perez DR 2001 Universal primer set for the full-length amplification of all influenza A viruses. Arch Virol 146:2275-2289. https://doi.org/10.1007/s007050170002
  10. Horimoto T, Rivera E, Pearson J, Senne D, Krauss S, Kawaoka Y, Webster RG 1995 Origin and molecular changes associated with emergence of a highly pathogenic H5N2 influenza virus in Mexico. Virology 213:223-230. https://doi.org/10.1006/viro.1995.1562
  11. Kawaoka Y, Naeve CW, Webster RG 1984 Is virulence of H5N2 influenza viruses in chickens associated with loss of carbohydrate from the hemagglutinin? Virology 139(2):303-316. https://doi.org/10.1016/0042-6822(84)90376-3
  12. Klenk HD, Wagner R, Heuer D, Wolff T 2002 Importance of hemagglutinin glycosylation for the biological functions of influenza virus. Virus Res 82:73-75.
  13. Lee CW, Suarez DL, Tumpey TM, Sung HW, Kwon YK, Lee YJ, Choi JG, Joh SJ. Kim MC, Lee EK, Park JM, Lu X, Katz JM, Spackman E, Swayne DE, Kim JH 2005 Characterization of highly pathogenic H5N1 avian influenza A viruses isolated from South Korea. J Virol 79:3692-3702. https://doi.org/10.1128/JVI.79.6.3692-3702.2005
  14. Lee DH, Kwon JH, Park JK, Lee YN, Yuk SS, Lee JB, Park SY, Choi IS, Song CS 2012 Characterization of lowpathogenicity H5 and H7 Korean avian influenza viruses in chickens. Poultry Sci 91:3086-3090. https://doi.org/10.3382/ps.2012-02543
  15. Li OT, Barr I, Leung CY, Chen H, Guan Y, Peiris JS, Poon LL 2007 Reliable universal RT-PCR assays for studying influenza polymerase subunit gene sequences from all 16 haemagglutinin subtypes. J Virol Methods 142:218-222. https://doi.org/10.1016/j.jviromet.2007.01.015
  16. Li Z, Chen H, Jiao P, Deng G, Tian G, Li Y, Hoffmann E, Webster RG, Matsuoka Y, Yu K 2005 Molecular basis of replication of duck H5N1 influenza viruses in a mammalian mouse model. J Virol 79: 12058-12064. https://doi.org/10.1128/JVI.79.18.12058-12064.2005
  17. Li Z, Jiang Y, Jiao P, Wang A, Zhao F, Tian G, Wang X, Yu K, Bu Z, Chen H 2006 The NS1 gene contributes to the virulence of H5N1 avian influenza viruses. J Virol 80:11115-11123. https://doi.org/10.1128/JVI.00993-06
  18. Matrosovich MN, Gambaryan AS, Teneberg S, Piskarev VE, Yamnikova SS, Lvov DK, Robertson JS, Karlsson KA. 1997 Avian influenza A viruses differ from human viruses by recognition of sialyloligosaccharides and gangliosides and by a higher conservation of the HA receptor-binding site. Virology 233:224-234. https://doi.org/10.1006/viro.1997.8580
  19. Matrosovich MN, Zhou N, Kawaoka Y, Webster R 1995 The surface glycoproteins of H5 influenza viruses isolated from humans, chickens, and wild aquatic birds have distinguishable properties. J Virol 73:1146-1155.
  20. Munster VJ, Wallensten A, Baas C, Rimmelzwaan GF, Schu tten M, Olsen B, Osterhaus AD, Fouchier RA 2005 Mallards and highly pathogenic avian influenza ancestral viruses, northern Europe. Emerg Infect Dis 11:1545-1551. https://doi.org/10.3201/eid1110.050546
  21. Obenauer JC, Denson J, Mehta PK, Su X, Mukatira S, Finkelstein DB, Xu X, Wang J, Ma J, Fan Y, Rakestraw KM, Webster RG, Hoffmann E, Krauss S, Zheng J, Zhang Z, Naeve CW 2006 Large-scale sequence analysis of avian influenza isolates. Science 311:576-580.
  22. Qiu BF, Liu WJ, Peng DX, Hu SL, Tang YH, Liu XF 2009 A reverse transcription-PCR for subtyping of the neuraminidase of avian influenza viruses. J Virol Methods 155:193-198. https://doi.org/10.1016/j.jviromet.2008.10.001
  23. Seo SH, Hoffmann E, Webster RG 2002 Lethal H5N1 influenza viruses escape host anti-viral cytokine responses. Nat Med 8:950-954. https://doi.org/10.1038/nm757
  24. Shortridge KF, Zhou NN, Guan Y, Gao P, Ito T, Kawaoka Y, Kodihalli S, Krauss S, Markwell D, Murti KG, Norwood M, Senne D, Sims L, Takada A, Webster RG 1998 Characterization of avian H5N1 influenza viruses from poultry in Hong Kong. Virology 252:331-342. https://doi.org/10.1006/viro.1998.9488
  25. Steel J, Lowen AC, Mubareka S, Palese P 2009 Transmission of influenza virus in a mammalian host is increased by PB2 amino acids 627K or 627E/701N. PLoS Pathog 5:e1000252. https://doi.org/10.1371/journal.ppat.1000252
  26. Stieneke-Groer A, Vey M, Angliker H, Shaw E, Thomas G, Roberts C, Klenk HD, Garten W 1992 Influenza virus hemagglutinin with multibasic cleavage site is activated by furin, a subtilisin-like endoprotease. EMBO J 11:2407-2414.
  27. Tamura K, Dudley J, Nei M, Kumar S 2007 MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596-1599. https://doi.org/10.1093/molbev/msm092
  28. Tsukamoto K, Ashizawa H, Nakanishi K, Kaji N, Suzuki K, Okamatsu M, Yamaguchi S, Mase M 2008 Subtyping of avian influenza viruses H1 to H15 on the basis of hemagglutinin genes by PCR assay and molecular determination of pathogenic potential. J Clin Microbiol 46:3048-3055. https://doi.org/10.1128/JCM.02386-07
  29. Tumpey TM, Maines TR, Van Hoeven N, Glaser L, Solozano A, Pappas C, Cox NJ, Swayne DE, Palese P, Katz JM, Garci-Sastre A 2007 A two-amino acid change in the hemagglutinin of the 1918 influenza virus abolishes transmission. Science 315:655-659. https://doi.org/10.1126/science.1136212
  30. Wang C, Takeuchi K, Pinto LH, Lamb RA 1993 Ion channel activity of influenza A virus M2 protein: characterization of the amantadine block. J Virol 67:5585-5594.
  31. Yamada S, Suzuki Y, Suzuki T, Le MQ, Nidom CA, Sakai-Tagawa Y, Muramoto Y, Ito M, Kiso M, Horimoto T, Shinya K, Sawada T, Kiso M, Usui T, Murata t, Lin Y, Hay A, Haire LF, Stevens DJ, Russell RJ, Gamblin SJ, Skehel JJ, Kawaoka Y 2006 Haemagglutinin mutations responsible for the binding of H5N1 influenza A viruses to human-type receptors. Nature 444:378-382. https://doi.org/10.1038/nature05264

Cited by

  1. GENEDIA Multi Influenza Ag Rapid Test for detection and H1, H3, and H5 subtyping of influenza viruses vol.73, 2015, https://doi.org/10.1016/j.jcv.2015.10.014