• Title/Summary/Keyword: H.264 video coding

Search Result 430, Processing Time 0.027 seconds

Joint Source/Channel Coding Based on Two-Dimensional Optimization for Scalable H.264/AVC Video

  • Li, Xiao-Feng;Zhou, Ning;Liu, Hong-Sheng
    • ETRI Journal
    • /
    • v.33 no.2
    • /
    • pp.155-162
    • /
    • 2011
  • The scalable extension of the H.264/AVC video coding standard (SVC) demonstrates superb adaptability in video communications. Joint source and channel coding (JSCC) has been shown to be very effective for such scalable video consisting of parts of different significance. In this paper, a new JSCC scheme for SVC transmission over packet loss channels is proposed which performs two-dimensional optimization on the quality layers of each frame in a rate-distortion (R-D) sense as well as on the temporal hierarchical structure of frames under dependency constraints. To compute the end-to-end R-D points of a frame, a novel reduced trellis algorithm is developed with a significant reduction of complexity from the existing Viterbi-based algorithm. The R-D points of frames are sorted under the hierarchical dependency constraints and optimal JSCC solution is obtained in terms of the best R-D performance. Experimental results show that our scheme outperforms the existing scheme of [13] with average quality gains of 0.26 dB and 0.22 dB for progressive and non-progressive modes respectively.

Digital Video Scrambling Method using Intra Prediction Mode of H.264 (H.264 인트라 예측 모드를 이용한 디지털 비디오 스크램블링 방법)

  • Ahn Jinhaeng;Jeon Byeungwoo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.2 s.302
    • /
    • pp.59-68
    • /
    • 2005
  • The amount of digitalized contents has been rapidly increased, but the main distribution channel of them is Internet which is easily accessible. Therefore 'security' necessarily arises as one of the most important issues and the method of protecting contents becomes a major research topic as much as data coding techniques. In recent years, many developers have studied on techniques that allow only authorized person to access contents. Among them the scrambling method is one of well-known security techniques. In this paper, we propose a simple and effective digital video scrambling method which utilizes the intra block properties of a recent video coding technique, H.264. Since intra prediction modes are adopted in H.264 standard, it is easy to scramble a video sequence with modification of the intra prediction modes. In addition to its simplicity, the proposed method does not increase bit rate after scrambling. The inter blocks are also distorted by scrambling intra blocks only. This paper introduces a new digital video scrambling method and verifies its effectiveness through simulation.

A Deblocking Filtering Method for Illumination Compensation in Multiview Video Coding (다시점 비디오 코딩에서 휘도 보상 방법에 적합한 디블록킹 필터링 방법)

  • Park, Min-Woo;Park, Gwang-Hoon
    • Journal of Broadcast Engineering
    • /
    • v.13 no.3
    • /
    • pp.401-410
    • /
    • 2008
  • Multiview Video Coding contains a macroblock-based illumination compensation tool which can compensate the variations of illuminations according to view or temporal directions. Thanks to illumination compensation tool, the coding efficiency of Multiview Video Coding has been enhanced. However illumination compensation tool also generates additional subjective drawbacks of the blocking artifacts due to macroblock-based compensations of mean values. A deblocking filtering method for Multiview Video Coding which is the same as in H.264/AVC does not consider illumination difference between the illumination compensated blocks, thus it can not effectively eliminate the blocking artifacts. Therefore, this paper analyzes the phenomena of blocking artifacts caused by illumination compensation and proposes a method which can effectively eliminate the blocking artifacts with the minimum changes of the H.264 deblockding filtering method. In the simulation results, it can be easily found the blocking artifacts are clearly eliminated in the subjective comparisons, and the average bit-rate reduction is up to 1.44%.

Selective Interpolation Filter for Video Coding (비디오 압축을 위한 선택적인 보간 필터)

  • Nam, Jung-Hak;Jo, Hyun-Ho;Sim, Dong-Gyu;Lee, Soo-Youn
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.1
    • /
    • pp.58-66
    • /
    • 2012
  • Even after establishment of H.264/AVC standard, the video coding experts group (VCEG) of ITU-T has researched on development of promising coding techniques to increase coding efficiency based on the key technology area (KTA) software. Recently, the joint collaboration team video coding (JCT-VC) which was composed of the VCEG and the motion picture experts group (MPEG) of ISO/IEC is developing a next-generation video standard namely HEVC intended to gain twice efficiency than H.264/AVC. An adaptive interpolation technique, one of various next-generation techniques, reported higher coding efficiency. However, it has high computational complexity and does not deal with various error characteristics for videos. In this paper, we investigate characteristics of interpolation filters and propose an effective fixed interpolation filter bank including diverse properties of error. Experimental results is shown that the proposed method achieved bitrate reduction by 0.7% and 1.3% compared to fixed directional interpolation filter (FDIF) of the KTA and the directional interpolation filter (DIF) of the HEVC test model, respectively.

Area-efficient Design of Intra Frame Decoder for H.264/AVC (H.264/AVC용 면적 효율적인 인트라 프레임 디코더 설계)

  • Jung, Duck-Young;Sonh, Seung-Il
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.11
    • /
    • pp.2020-2025
    • /
    • 2006
  • H.264/AVC is newest video coding standard of the ITU-T Video coding Experts Group and the ISO/IEC Moving Picture Expets Group. Recently H.264/AVC has been adopted as a video compression standard in DMB and multimedia equipments. In this paper, we propose a H.264/AVC intra frame decoder which can minimize the memory usage and chip size. The proposed intra frame decoder is described in VHDL language and simulated in model_sim. It was verified in chip level by downloading to XCV1000E FPGA chip.

An Efficient Coding Method for Stereoscopic Videos using HEVC (HEVC를 이용한 양안식 영상의 효율적인 부호화 방법)

  • Hwang, Soo-Jin;Ho, Yo-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.12C
    • /
    • pp.721-726
    • /
    • 2011
  • The compression performance of HEVC (high efficiency video coding) is improved 40%, compared to H.264/AVC. Since the existing 3D video CODEC is based on H.264/AVC or MPEG-2, we can improve the compression performance when we use the proposed stereoscopic video coding method based on HEVC. Since the stereoscopic video has the temporal and inter-view correlations, the videos of the left and right cameras encode together to improve the performance. Especially, we implemented the proposed technique using HM(HEVC test model) 3.4. To compare the performance of the proposed method, we only compare the right view video which is coded using the inter-view prediction. The proposed method which is considered inter-view correlation is improved the performance which BDBR reduce about 36.24% and BDPSNR increase approximately 1.19 dB compared to the separated-coding method.

Fast Mode Decision Algorithm for H.264 using Mode Classification (H.264 표준에서 모드 분류를 이용한 고속 모드결정 방법)

  • Kim, Hee-Soon;Ho, Yo-Sung
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.3
    • /
    • pp.88-96
    • /
    • 2007
  • H.264 is a new international video coding standard that can achieve considerably higher coding efficiency than conventional standards. Its coding gain has been achieved by employing advanced video coding methods. Specially, the increased number of macroblock modes and the complex mode decision procedure using the Lagrangian optimization are the main factors for increasing coding efficiency. Although H.264 obtains improved coding efficiency, it is difficult to do an real-time encoding because it considers all coding parameters in the mode decision procedure. In this paper, we propose a fast mode decision algorithm which classifies the macroblock modes in order to determine the optimal mode having low complexity quickly. Simulation results show that the proposed algorithm can reduce the encoding time by 34.95% on average without significant PSNR degradation or bit-rate increment. In addition, in order to show the validity of simulation results, we set up a low boundary condition for coding efficiency and complexity and show that the proposed algorithm satisfies the low boundary condition.

No-Referenced Video-Quality Assessment for H.264 SVC with Packet Loss (패킷 손실시 H.264 SVC의 무기준법 영상 화질 평가 방법)

  • Kim, Hyun-Tae;Kim, Yo-Han;Shin, Ji-Tae;Won, Seok-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.11C
    • /
    • pp.655-661
    • /
    • 2011
  • The transmission issues for the scalable video coding extension of H.264/AVC (H.264 SVC) video has been widely studied. In this paper, we propose an objective video-quality assessment metric based on no-reference for H.264 SVC using scalability information. The proposed metric estimate the perceptual video-quality reflecting error conditions with the consideration of the motion vectors, error propagation patterns with the hierarchical prediction structure, quantization parameters, and number of frame which damaged by packet loss. The proposed metric reflects the human perceptual quality of video and we evaluate the performance of proposed metric by using correlation relationship between differential mean opinion score (DMOS) as a subjective quality and proposed one.

An Efficient Mode Decision Method for Fast Intra Prediction of SVC (SVC에서 빠른 인트라 예측을 위한 효율적인 모드 결정 방법)

  • Cho, Mi-Sook;Kang, Jin-Mi;Chung, Ki-Dong
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.4
    • /
    • pp.280-283
    • /
    • 2009
  • To improve coding performance of scalable video coding which is an emerging video coding standard as an extension of H.264/AVC, SVC uses not only intra prediction and inter prediction but inter-layer prediction. This causes a problem that computational complexity is increased. In this paper, we propose an efficient intra prediction mode decision method in spatial enhancement layer to reduce the computational complexity. The proposed method selects Inra_BL mode using RD cost of Intra_BL in advance. After that, intra mode is decided by only comparing DC modes. Experimental results show that the proposed method reduces 59% of the computation complexity of intra prediction coding, while the degradation in video quality is negligible.

Depth-of-interest-based Bypass Coding-unit Algorithm for Inter-prediction in High-efficiency Video Coding

  • Rhee, Chae Eun
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.4
    • /
    • pp.231-234
    • /
    • 2016
  • The next-generation video coding standard known as High-Efficiency Video Coding (HEVC) was developed with the aim of doubling the bitrate reduction offered by H.264/Advanced Video Coding (AVC) at the expense of an increase in computational complexity. Mode decision with motion estimation is still one of the most time-consuming computations in HEVC, as it is with H.264/AVC. Several schemes for a fast mode decision have been presented in reference software and in other studies. However, a possible speed-up in conventional schemes is sometimes insignificant for videos that have inhomogeneous spatial and temporal characteristics. This paper proposes a bypass algorithm to skip large-block-size predictions for videos where small block sizes are preferred over large ones. The proposed algorithm does not overlap with those in previous works, and thus, is easily used with other fast algorithms. Consequently, an independent speed-up is possible.