• Title/Summary/Keyword: H-reflex

Search Result 68, Processing Time 0.025 seconds

Muscle Eccentric Control in Gait Initiation (보행 시작 시 원심성 근육 수축 조절)

  • Kim, Hyeong-Dong
    • Physical Therapy Korea
    • /
    • v.8 no.4
    • /
    • pp.81-89
    • /
    • 2001
  • There are two independent mechanisms to control the segmental reflex gain in humans during gait. They are presynaptic inhibition and homosynaptic depression. Through the mechanism of the presynaptic inhibition, the muscle spindle afferent feedback can be properly gated during eccentric phase of gait. The modulation of the presynaptic inhibition is reflected in the level of H-reflex at a constant EMG level. During the eccentric muscle activation presynaptic inhibition should increase to account for the lower amplitude level of H-reflex at a constant level of EMG. Homosynaptic depression is another mechanism responsible for regulating the effectiveness of the muscle spindle afferent feedback. Both the presynaptic inhibition and the monosynaptic depression are responsible for modulating reflex gain during gait initiation. Reflex modulation is influenced not only as a passive consequence of the alpha motor neuron excitation level, but also through supraspinal mechanisms. Spastic paretic patients show the impaired soleus H-reflex modulation either during the initial stance phase, or during the swing phase. This abnormal modulatory mechanism can partially and artificially be restored by the application of peripheral stimulus to the sole of the foot, provided that the segmental circuitry remains functional.

  • PDF

Loss of Facilitation in H-reflex: Implication as an Initial Abnormality and an Evidence of Central Nervous Involvement in Guillian-Bare Syndrome (H-반사 촉진의 소실: 길랑-바레 증후군의 초기 이상과 중추신경 침범의 증거로써의 의미)

  • Sung, Jung-Joon;Lee, Yoon-Jeong;Hong, Yoon-Ho;Chung, Young-Min;Lee, Kwang-Woo
    • Annals of Clinical Neurophysiology
    • /
    • v.4 no.2
    • /
    • pp.119-124
    • /
    • 2002
  • Background : Guillain-$Barr{\acute{e}}$ syndrome(GBS) is a neurologically emergent condition, leading to respiratory insufficiency without an early and appropriate treatment. Thus, the treatment of GBS requires early diagnosis but it is difficult due to the low sensitivity of laboratory tools in the initial stage. Hoffman reflex (H-reflex) and its facilitation by Jendrassik maneuver (JM) are sensitive tools evaluating the central circuit of motor system on the spinal cord level. The aim of this study is to test whether the change of H-reflex and F-wave under the JM is able to detect the early stage of GBS and whether GBS involves the central nervous system (CNS). Material and Methods : All 7 GBS patients who showed normal or nearly normal nerve conduction study were included. The facilitation of H-reflex and changes of F-wave were calculated by measuring the percent difference of H-reflex or F-wave amplitude under JM compared to basal H-reflex of F-wave amplitude. The changes of F-wave and H-reflex in the GBS patients were compared with them of 8 healthy controls. Results : The F-wave amplitudes of both healthy controls and GBS patients did not changed under the influence of JM ($102.4{\pm}24.9%$, $108.7{\pm}29.0%$ respectively). However, the facilitation of H-wave by JM in the GBS patients was absent ($98.8{\pm}5.8%$), even though the H-reflex amplitude I the healthy controls increased under the influence of JM ($124.8{\pm}12.1%$). Conclusions : The loss of H-reflex facilitation in GBS implies that this phenomenon might be the most early change detected in the electrophysiological study and support the early diagnosis, and that GBS might include lesion in the spinal motor CNS.

  • PDF

The Effect of Repetitive Transcranial Magnetic Stimulation on H-Reflex Inhibition and Fascilitation of Range of Motion of Spastic Ankle Joint in Chronic Stroke Patients (만성 뇌졸중 시 반복경두개자기자극에 의한 경직성 발목관절의 관절가동 범위 향상 및 H-반사 억제 효과)

  • Cho, Mi-Suk
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.6 no.1
    • /
    • pp.71-79
    • /
    • 2011
  • Purpose : The purpose of this study was carried out to investigate the effect of repetitive transcranial magnetic stimulation on increase of H-reflex inhibition and fascilitation of range of motion of spastic ankle joint in chronic stroke patients. Methods : 30 chronic stroke patients were randomly divided into three groups, a control group(placebo rTMS group), 5 Hz rTMS group and manual therapy group. The MAS and ROM of ankle joint and H-reflex inhibition of soleus muscle were evaluated on each group. Results : The rTMS group decreased MAS of ankle joint and increased H-reflex inhibition of soleus muscle, and ROM of ankle joint than manual therapy group. The placebo rTMS group did not affected the change of MAS, ROM of ankle joint and H-reflex inhibition of soleus muscle. Conclusion : The rTMS was a good therapeutic tool to improve the foot drop in the chronic stroke patients.

Usefulness of Electrophysiological Tests in Movement Disorders (이상운동 질환에서의 신경생리적 검사법의 유용성)

  • Seo, Man-Wook;Lee, Kwang-Woo
    • Annals of Clinical Neurophysiology
    • /
    • v.1 no.2
    • /
    • pp.126-146
    • /
    • 1999
  • In clinical neurology various different electrophysiological tests are widely used to demonstrate the unsuspected malfunctioning in the nervous system and to monitor over time the clinical status of patients. In addition clinical neurologists and neurosurgeons take advantage of the intraoperative monitorings to increase the quality of neurosurgical operations in the posterior fossa, in the spinal cord, or in visual pathways. In the field of movement disorders, elecrophysiolgical tests provide neurologists with making accurate differential diagnoses with useful therapeutic stratergies as well as with investigating the pathophysiological machanisms. By using the electromyographic tests it could be possible for us to evaluate the types of blephalospasm, the extent of hemifacial spasm, the level of myoclonus, and the prime muscles of torticollis etc. Sometimes the myographic guidance may be critical for choosing the exact injecting site of botulinum toxin. These several decades various electroencephalographic and evoked potential tests has been utilized in the electrophysiological laboratories to understand the basic pathophysiology of myoclonus, spasticity and other central motor dysfunctions. It could be one of the breakthroughs in the area of behavorial neurology that the brain function can be mapped by the spontaneous or evoked electrical activities of nervous system since the movement related potentials (MRPs) had been studies for several decades. Various reflex tests such as masseter reflex, blink reflex, click evoked vestibulocollic reflex, facial reflex, stretch reflex, flexor reflex, H-reflex, H-reflex recovery curve, vestibular inhibition of H-reflex, reciprocal inhibition, recurrent or Renshaw reflex, Ib inhibition, cutaneous reflex have been also used to understand normal or abnormal physiology in movement disorders. Polysomnography, posturography and gait studies are also applied in clinical neurology in association with with movement disorders which are useful in deciding the treatment regimen.

  • PDF

The Change of H Reflex by Galvanic Vestibular Stimulation (평류전정자극에 의한 H 반사의 변화)

  • Hwang, Tae-Yeun;Kim, Tae-Youl;Park, Jang-Sung
    • Journal of the Korean Academy of Clinical Electrophysiology
    • /
    • v.2 no.3
    • /
    • pp.65-73
    • /
    • 2004
  • In experimental method, this study was that galvanic vestibular stimulation in vestibular system influenced the excitability of spinal neuron through. H-reflex was measured by galvanic vestibular stimulation of binaural(right-negative pole and left-positive pole) at left head turning and prone position in sixteen normal subjects in their twenties age were selected. The summary of the comparison results were obtained below. 1. In the change of H reflex according to galvanic vestibular stimulation(GVS), Hmax amplitude(p<.05) increased significantly after stimulation. 2. In the change of H reflex according to galvanic vestibular stimulation(GVS), Hmax/Mmax ratio(p<.05) increased significantly after stimulation. In the conclusion, galvanic vestibular stimulation influenced the excitability of vestibulospinal tract and spinal neuron.

  • PDF

Utility of H-reflex in the Diagnosis of Cervical Radiculopathy (경수 신경근병증 진단에서의 H-reflex의 유용성)

  • Lee, Jun;Park, Gun-Ju;Doo, Hyun-Cheol;Park, Sung-Geon;Jeong, Yun-Seog;Hah, Jung-Sang
    • Journal of Yeungnam Medical Science
    • /
    • v.14 no.1
    • /
    • pp.111-122
    • /
    • 1997
  • H-reflex is a kind of late respons which can be used for the proximal nerve conduction study. Also it is a useful and widely used nerve conduction technique es to look electrically at the monosynaptic reflex. Although recordable from all muscles theoretically, H-reflexes are most commonly recorded from the calf muscles following stimulation of the tibial nerve in the popliteal fossa. But in this study, We tried to establish the normal data and to evaluate the significance of the H-reflex study in cervical radiculopathy. H-reflexes were recorded from flexor carpi radialis (FCR) muscle, extensor carpi radialis (ECR) muscle, brachioradialis (BR) muscle, and abductor digiti minimi (ADM) muscle in 31 normal adults (62 cases) and 12 patients with cervical radiculopathy. The mean values of H-reflex latency in normal control group were $16.16{\pm}1.65$ msec in FCR; $15.99{\pm}1.25$ msec in ECR; $16.47{\pm}1.59$ msec in BR; $24.46{\pm}1.42$ msec in ADM. And the mean values of side to side difference of H-reflex latency were $0.47{\pm}0.48$ msec in FCR; $0.68{\pm}0.72$ msec in ECR; $0.63{\pm}0.43$ msec in BR; $22.31{\pm}1.24$ msec in ADM. Mean values of side to side differences of interlatency time were $0.49{\pm}0.47$ msec in FCR; $0.73{\pm}0.62$ msec in ECR; $0.79{\pm}0.71$ msec in BR; $0.69{\pm}0.44$ msec in ADM. Also, there were no significant differences in H-reflex latency between right and left side. H-reflex tests in patient group with cervical radiculopathy revealed abnormal findings in 11 out of 12 patients. These results suggest that H-reflex in the upper extremity would be helpful in the diagnosis of the cervical radiculopathy.

  • PDF

The Change of H Reflex by Neuromuscular Electrical Stimulation (신경근전기자극에 의한 H 반사의 변화)

  • Lee, Jeong-Woo;Kim, Tae-Youl
    • Journal of Korean Physical Therapy Science
    • /
    • v.10 no.1
    • /
    • pp.65-73
    • /
    • 2003
  • The purpose of this study was to determine whether neuromuscular electrical stimulation(NMES), applied over the antagonist or the agonist, would alter the H reflex. Attention was focused on the roles of stimulus location. We used normal eight subjects without neuromuscular disease which were divided into 3 groups; the subjects were diveded into group of antagonist, agonist, antagonist-agonist. All groups were meted of eight subjects. Neuromuscular electrical stimulation was administered for 15 minutes. All subjects were subjected to three tests, including a pre-test, post-test and post-20 minute test. The data were analyzed by repeated measures ANOVA and paired t-test. The results were as follows; 1. H latencies were significantly increased in agonist and antagonist-agonist group (p<.01). 2. H/M intervals were significantly increased in agonist and antagonist-agonist group (p<.01). 3. H amplitudes were significantly increased in agonist (p<.001) and antagonist-agonist group (p<.01). 4. H/M ratios were significantly decreased in agonist and antagonist-agonist group (p<.01). In agonist group. H-reflex amplitudes and H/M ratios were more significantly decreased than antagonist group. Future studies will need to determine what influence NMES may have on the excitability of spinal motor neurons in people having UMN syndrome.

  • PDF

A Study on H-reflex Change and MVIC Change Depending upon Shouting Type (기합소리 유형에 따른 H-reflex변화와 MVIC변화 분석)

  • Jeong, Ik-Su;Oh, Cheong-Hwan;Lee, Dong-Jin;Lee, Gun-Hee;Lee, Jin
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.4
    • /
    • pp.655-661
    • /
    • 2009
  • This study investigated the effects of different types of shouting actions on the strength of the human body. Both H-reflex and MVIC measures of the rectus femoris muscle were used to investigate effects on impact force and motor performance, in order to find optimum shouting methods. The H-reflex of the soleus muscle gave an electric stimulus to the curve of the knee that contains the tibial nerves. Surface electromyelography was used to collect muscle activity the amplitude increased 28% at action with shouting and 29% at the one immediately after short-time shouting than the one without shouting was. To assess the myoelectric activity of the rectus femoris, a surface electrode was attached to the right side of the lower extremity and to increase 10% and 1% depending upon shouting type. The findings were as follows. Shouting affected not only motor efficiency (H-reflex), but also the amplitude of MVIC, with a positive effect on increased muscle strength. Further comprehensive studies are needed to investigate the many variables of increased muscle strength for general purposes, for instance, shouting and breathing, brain waves, and so on.

The Change of Spinal Motor Neuron Excitability by Neuromuscular Electrical Stimulation (신경근전기자극에 의한 척수운동신경원의 흥분성 변화)

  • Lee, Jeong-Woo;Kim, Tae-Youl;Lee, In-Hak;Lee, Joon-Hee
    • Journal of the Korean Academy of Clinical Electrophysiology
    • /
    • v.1 no.1
    • /
    • pp.1-15
    • /
    • 2003
  • The purpose of this study was to determine the effect of neuromuscular electrical stimulation(NMES) on the alteration of spinal motor neuron excitability. In this article, I would like to experiment on a standard capacity of clinical electrophysiology, a difference in applying methods and a clinical efficiency of NMES by Nerve conduction velocity. We used normal eight subjects without neuromuscular disease and all subjects participated 3 session, which at least 1 week between session. Participants classified according to each group in Antagonist, Agonist, Antagonist-Agonist by the NMES. The test was measured continuously pre test, post-test, post 20 minute test by EMG including H reflex, F wave, motor nerve conduction velocity(MNCV). The following results were obtained; 1. H-reflex latencies and H/M intervals were significantly increased in agonist and antagonist-agonist group(p<.01). 2. H-reflex amplitudes and H/M ratios were significantly decreased in agonist and antagonist-agonist group(p<.01). In agonist group, H-reflex amplitudes and H/M ratios were more significantly decreased than antagonist group. 3. F-wave latencies were significantly increased in agonist and antagonist-agonist group(p<.01). F/M intervals were significantly increased in antagonist-agonist group(p<.01). F wave conduction velocities were significantly increased in agonist and antagonist-agonist group(p<.01) but F/M ratios were not significant. 4. MNCV were significantly decreased in agonist(p<.01). These results lead us to the conclusion that agonist and Antagonist-agonist was significantly decreased excitability of spinal motor neuron. Conversely, Antagonist does not decreased. Therefore, A further direction of this study will be to provide more evidence that NMES have an effect on excitability of spinal motor neurons in UMN syndrome.

  • PDF

Imaging System Science Laboratory

  • Nalcioglu, O.;Cho, Z.H.
    • Journal of Biomedical Engineering Research
    • /
    • v.4 no.1
    • /
    • pp.3-8
    • /
    • 1983
  • Characteristics of the lung inflation and deflation reflexes were measured at various temperatures on the cervical vagi in five anesthetized mongrel dogs. Nerve temperature was maintained at the body temperature, and 2-14˚C with 2˚C apart using a specially designed automated vagal cooling apparatus with an accuracy to within $\pm$ 0.1˚c at each temperature. The inflation reflex was blocked abruptly at 8-10˚C. The deflation reflex started weakened at 14˚C, thereafter showed a gradual blockade with the temperature decreased with a substantial variance among the animals.It was approximately 75% blocked at 2-5˚C. These differences in temperature characteristics made it hard to differentiate the deflation reflex from the inflation reflex. In one animal, however, the inflation reflex was completely blocked with the deflation reflex almost alive at 6-8˚C. This suggests that differential cold blockade of the vagal reflexes can be done only in selected subjects. Furthermore, the fact that these two reflexes were blocked at different temperatures may be due to the differences in the nerve fiber size and the changes in the conduction velocity with temperature.

  • PDF