• Title/Summary/Keyword: H-ras

Search Result 173, Processing Time 0.03 seconds

Differential Functions of Ras for Malignant Phenotypic Conversion

  • Moon Aree
    • Archives of Pharmacal Research
    • /
    • v.29 no.2
    • /
    • pp.113-122
    • /
    • 2006
  • Among the effector molecules connected with the group of cell surface receptors, Ras proteins have essential roles in transducing extracellular signals to diverse intracellular events, by controlling the activities of multiple signaling pathways. For over 20 years since the discovery of Ras proteins, an enormous amount of knowledge has been accumulated as to how the proteins function in overlapping or distinct fashions. The signaling networks they regulate are very complex due to their multiple functions and cross-talks. Much attention has been paid to the pathological role of Ras in tumorigenesis. In particular, human tumors very frequently express Ras proteins constitutively activated by point mutations. Up to date, three members of the Ras family have been identified, namely H-Ras, K-Ras (A and B), and N-Ras. Although these Ras isoforms function in similar ways, many evidences also support the distinct molecular function of each Ras protein. This review summarizes differential functions of Ras and highlights the current view of the distinct signaling network regulated by each Ras for its contribution to the malignant phenotypic conversion of breast epithelial cells. Four issues are addressed in this review: (1) Ras proteins, (2) membrane localization of Ras, (3) effector molecules downstream of Ras, (4) Ras signaling in invasion. In spite of the accumulation of information on the differential functions of Ras, much more remains to be elucidated to understand the Ras-mediated molecular events of malignant phenotypic conversion of cells in a greater detail.

Fibronectin Induces Pro-MMP-2 Activation and Enhances Invasion in H-Ras-Transformed Human Breast Epithelial Cells

  • Kim, Jong-Sook;Moon, A-Ree
    • Biomolecules & Therapeutics
    • /
    • v.17 no.3
    • /
    • pp.288-292
    • /
    • 2009
  • Interactions between tumor cells and the extracellular matrix (ECM) strongly influence tumor development, affecting cell survival, proliferation and migration. Fibronectin, a major component of ECM, has been shown to interact with integrins especially the ${\alpha}5{\beta}1$ integrin. Cell invasion and metastasis are often associated with matrix metalloproteinases (MMPs) which are capable of digesting the different components of the ECM and basement membrane. MMP-2 is produced as a latent pro-MMP-2 (72 kDa) to be activated, resulting the 62 kDa active MMP-2. In this study, we investigated the effect of fibronectin on activation of pro-MMP-2 and the cellular invasiveness in H-Ras-transformed MCF10A human breast epithelial cells. Here we show that fibronectin induces activation of pro-MMP-2 and up-regulation of MT1-MMP and TIMP-2 in H-Ras MCF10A cells. These results demonstrate that H-Ras MCF10A cells secrete high levels of active MMP-2 when cultured with fibronectin, suggesting a possible interaction between the ECM network and H-Ras MCF10A cells to generate active MMP-2 which is important for proteolysis and ECM remodeling. Invasive and migratory abilities of H-Ras MCF10A cells were enhanced by fibronectin. Fibronectin up-regulated the expression of ${\beta}1$ integrin which may play a role in cellular responses exerted by fibronectin. Since acquisition of pro-MMP-2 activation can be associated with increased malignant progression, this study provides a mechanism for the cell surface-matrix degrading effect of fibronectin which will be crucial to breast cell invasion and migration.

Transforming Growth Factor-${\beta}$ (TGF-${\beta}$) Induces Invasion and Migration of Ras- Transformed MCF10A Human Breast Epithelial Cells

  • Kim, Mi-Sung;Moon , A-Ree
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.327.3-328
    • /
    • 2002
  • Transforming growth factor-${\beta}$ (TGF-${\beta}$), a hormonally active polypeptide found in normal and transformed tissues. regulates cellular growth and phenotyphic plasticity. We have previously shown that H-ras. but not N-ras. induces invasive phenotype in MCF10A human breast epithelial cells. In this study. we wished to examine the effect of TGF-${\beta}$ on H-ras-induced invasion and motility in MCFI 10A cells by performing in vitro invasion assay and wound migration assay. (omitted)

  • PDF

Activation of MKK6 Induces Invasive and Migrative Phenotypes in MCF10A Human Breast Epithelial Cells

  • Song, Hyun;Moon, Aree
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2003.10b
    • /
    • pp.141-141
    • /
    • 2003
  • Ras expression has been suggested as a marker for tumor aggressiveness of breast cancer, including the degrees of invasion and tumor recurrence. We previously showed that p38 MAPK is a key signaling molecule differentially regulated by H-ras and N-ras, leading to H-ras-specific cell invasive and migrative phenotypes in human breast epithelial cells (Cancer Res.: 63, 5454-5461, 2003).(omitted)

  • PDF

Activation of MKK6 induces invasive and migrative phenotypes in MCF10A human breast epithelial cells

  • Song, Hyun;Moon, A-Ree
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.170.2-170.2
    • /
    • 2003
  • Ras expression has been suggested as a marker for tumor aggressiveness of breast cancer, including the degrees of invasion and tumor recurrence. We previously showed that p38 MAPK is a key signaling molecule differentially regulated by H-ras and N-ras, leading to H-ras-specific cell invasive and migrative phenotypes in human breast epithelial cells (Cancer Res: 63, 5454-5461, 2003). In this study, we further investigated the role of p38 MARK pathway in the induction of metastatic potential in MCF10A cells as a "gain of function" study. (omitted)

  • PDF

H$\alpha$ IMAGING AND PHOTOMETRY OF BLUE COMPACT GALAXIES WITH 6-M TELESCOPE

  • NEIZVESTNY S. I.;KNIAZEV A. YU.;LIPOVETSKY V. A.;PUSTILNIK S. A.;UGRYUMOV A. V.;KORABLINA N. B.;ISAENKO V. N.
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.77-78
    • /
    • 1996
  • We perfom a large project for complex study of Blue Compact Galaxies (BCGs) with strong star formation, which includes optical spectroscopy, BVR CCD photometry and HI 21 cm radio survey. The most interesting galaxies are studied also with HST and VLA. In the frame of this project we began the study of H$\alpha$ morphology of BCGs with 6-m telescope. We present and discuss here the results for the first 6 galaxies. We found the noticeable variety of forms for H$\alpha$ morphology comparing to broad band images: from very compact HII region in very center of stellar body (Mark 996, possible dwarf post-merger, old galaxy experiencing strong star formation burst), to very extended gas emission encompassing the whole area traced by stars (SBS 0335-052, the most probable young galaxy in formation).

  • PDF

EFFECTS OF SIGNAL TRANSDUCTION PATHWAY IN THE RAS-INDUCED CELLULAR TRANSFORMATION OF HUMAN EPITHELIAL CELLS IN CULTURE (인체 상피세포에서 ras-종양유전자의 발암화가 신호 전달 기작에 미치는 영향)

  • Jang, Do-Geun;Byeon, Ki-Jeong;Kim, Chin-Soo
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.26 no.3
    • /
    • pp.254-261
    • /
    • 2000
  • The present study has attempted to look into the mechanism of ras-induced carcinogenesis in a human epithelial cell system. Human epithelial cells immortalized with Ad12-SV40 hybrid virus were used to assess carcinogenic potential of the ras-oncogene. Cells transfected with pSV2-ras showed characteristics of cellular transformation. The transformation parameters such as cell density, soft-agar colony formation, and cell aggregation were significantly increased in the cells expressing ras oncoprotein. In addition, the duration required for the appearance of foci was shortened in the ras-transfected cells. Consistent with other reports, our results demonstrated an evidence that the ras-oncogene induced the cellular transformation of human epithelial cell system. When a high concentration of glucocorticoid was added into the media, transformation process was accelerated. It is speculated that glucocorticoid may provide an advantageous environment for the proliferation of the transformed cells. The induction of the intracellular free calcium concentrations following agonist treatment was significantly lower in the transformed cells than in the control cells. These effects were more manifested in the presence of extracellular cacium, indicating that the transformation process may alter the influx pathway of extracellular calcium. The induction of $IP_3$ following agonist treatment was also lower in the transformed cells than in the control cells. Thus, it is suggested that phospholipase C-coupled pathway was down-regulated in the process of the ras-induced transformation. While the levels of $TGF-{\beta}_1$ and PAI-2 mRNAs were decreased, the level of fibronectin mRNA was increased. The results indicate that mechanism of the ras-induced transformation may be associated with the altered expressions of growth regulatory factors. The present study demonstrates an evidence that the ras-induced cellular transformation may be associated with alteration of signal transduction and growth regulatory factors. The study will contribute to improve the understanding of molecular mechanism of epithelium-derived cancers including oral cancer.

  • PDF

Sensitivity of a Hyperactivated Ras Mutant in Response to Hydrogen Peroxide, Menadione and Paraquat

  • 채경희;이경희
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.11
    • /
    • pp.1202-1206
    • /
    • 1998
  • We have explored the impact of altering the Ras-cAMP pathway on cell survival upon oxidative exposures. A hyperactivated Ras mutant of Saccharomyces cerevisiae, intrinsically more sensitive to heat shock than the wild type, was investigated with regard to oxidative stress. In this paper we report that the response of iral, ira2-deleted mutant (IR2.53) to an oxidant, such as hydrogen peroxide (H2O2) or menadione is more sensitive than that of the wild type. IR2.53 showed a dramatic decrease in survival rate when challenged with 0.1 mM H2O2 for 30 min. The greater sensitivity of IR2.53 was also noticed with treatment of 0.01 mM menadione. Prior to oxidative stresses by these oxidants, both the wild type and the mutant were preconditioned with a mild heat shock (37 ℃, 30 min), resulting in improved survivals against oxidative stresses. Rescue of IR2.53 from menadione stress by heat pretreatment was more clearly demonstrated than that from H2O2 treatment. On the other hand, no significant difference was observed between the wild type and the IR2.53 mutant in their survival rates upon paraquat treatments. These findings imply that the mechanism by which H2O2 and menadione put forth their oxidative effects may be closely associated with the cAMP-Ras pathway whereas that of paraquat is independent of the Ras pathway. Finally, the level of glutathione (GSH) was measured enzymatically as an indicator of antioxidation and compared with the survival rate. Taken all these together, this study provides an insight into a mechanism of the Ras pathway regulated by several oxidants and suggests that the Ras pathway plays a crucial role in protection of cell damage following oxidative stress.

Induction of the Nuclear Proto-Oncogene c-fos by the Phorbol Ester TPA and c-H-Ras

  • Kazi, Julhash U.;Soh, Jae-Won
    • Molecules and Cells
    • /
    • v.26 no.5
    • /
    • pp.462-467
    • /
    • 2008
  • TPA is known to cooperate with an activated Ras oncogene in the transformation of rodent fibroblasts, but the biochemical mechanisms responsible for this effect have not been established. In the present study we used c-fos promoter-luciferase constructs as reporters, in transient transfection assays, in NIH3T3 cells to assess the mechanism of this cooperation. We found a marked synergistic interaction between TPA and a transfected v-Ha-ras oncogene in the activation of c-fos promoter and SRE. SRE has binding sites for TCF and SRF. A dominant-negative Ras (ras-N17) inhibited the TPA-Ras synergy by blocking the PKC-MAPK-TCF pathway. Dominant-negative RhoA and Rac1 (but not Cdc42Hs) inhibited the TPA-Ras synergy by blocking the Ras-Rho-SRF signaling pathway. Constitutively active $PKC{\alpha}$ and $PKC{\varepsilon}$ showed synergy with v-Ras. These results suggest that the activation of two distinct pathways such as Ras-Raf-ERK-TCF pathway and Rho-SRF pathway are responsible for the induction of c-fos by TPA and Ras in mitogenic signaling pathways.