• Title/Summary/Keyword: H-profile

Search Result 1,788, Processing Time 0.042 seconds

Errors in Net Ecosystem Exchanges of CO2, Water Vapor, and Heat Caused by Storage Fluxes Calculated by Single-level Scalar Measurements Over a Rice Paddy (단일 높이에서 관측된 저장 플럭스를 사용할 때 발생하는 논의 이산화탄소, 수증기, 현열의 순생태계교환량 오차)

  • Moon, Minkyu;Kang, Minseok;Thakuri, Bindu Malla;Lee, Jung-Hoon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.3
    • /
    • pp.227-235
    • /
    • 2015
  • Using eddy covariance method, net ecosystem exchange (NEE) of $CO_2$ ($F_{CO_2}$), $H_2O$ (LE), and sensible heat (H) can be approximated as the sum of eddy flux ($F_c$) and storage flux term ($F_s$). Depending on strength and distribution of sink/source of scalars and magnitude of vertical turbulence mixing, the rates of changes in scalars are different with height. In order to calculate $F_s$ accurately, the differences should be considered using scalar profile measurement. However, most of flux sites for agricultural lands in Asia do not operate profile system and estimate $F_s$ using single-level scalars from eddy covariance system under the assumption that the rates of changes in scalars are constant regardless of the height. In this study, we measured $F_c$ and $F_s$ of $CO_2$, $H_2O$, and air temperature ($T_a$) using eddy covariance and profile system (i.e., the multi-level measurement system in scalars from eddy covariance measurement height to the land surface) at the Chengmicheon farmland site in Korea (CFK) in order to quantify the differences between $F_s$ calculated by single-level measurements ($F_s_{-single}$ i.e., $F_s$ from scalars measured by profile system only at eddy covariance system measurement height) and $F_s$ calculated by profile measurements and verify the errors of NEE caused by $F_s_{-single}$. The rate of change in $CO_2$, $H_2O$, and Ta were varied with height depending on the magnitudes and distribution of sink and source and the stability in the atmospheric boundary layer. Thus, $F_s_{-single}$ underestimated or overestimated $F_s$ (especially 21% underestimation in $F_s$ of $CO_2$ around sunrise and sunset (0430-0800 h and 1630-2000 h)). For $F_{CO_2}$, the errors in $F_s_{-single}$ generated 3% and 2% underestimation of $F_{CO_2}$ during nighttime (2030-0400 h) and around sunrise and sunset, respectively. In the process of nighttime correction and partitioning of $F_{CO_2}$, these differences would cause an underestimation in carbon balance at the rice paddy. In contrast, there were little differences at the errors in LE and H caused by the error in $F_s_{-single}$, irrespective of time.

Real-time Control of Biological Animal Wastewater Treatment Process and Stability of Control Parameters (생물학적 축산폐수 처리공정의 자동제어 방법 및 제어 인자의 안정성)

  • Kim, W.Y.;Jung, J.H.;Ra, C.S.
    • Journal of Animal Science and Technology
    • /
    • v.46 no.2
    • /
    • pp.251-260
    • /
    • 2004
  • The feasibility and stability of ORP, pH(mV) and DO as a real-time control parameter for SBR process were evaluated in this study. During operation, NBP(nitrogen break point) and NKP(nitrate knee point), which reveal the biological and chemical changes of pollutants, were clearly observed on ORP and pH(mV)-time profiles, and those control points were easily detected by tracking the moving slope changes(MSC). However, when balance of aeration rate to loading rate, or to OUR(oxygen uptake rate), was not optimally maintained, either false NBP was occurred on ORP and DO curves before the appearance of real NBP or specific NBP feature was disappeared on ORP curve. Under that condition, however, very distinct NBP was found on pH(mV)-time profile, and stable detection of that point was feasible by tracking MSC. These results might mean that pH(mV) is superior real-time control parameter for aerobic process than ORP and DO. Meanwhile, as a real-time control parameter for anoxic process, ORP was very stable and more useful parameter than others. Based on these results, a stable real-time control of process can be achieved by using the ORP and pH(mv) parameters in combination rather than using separately. A complete removal of pollutants could be always ensured with this real-time control technology, despite the variations of wastewater and operation condition, as well as an optimization of treatment time and capacity could be feasible.

Shape prediction of polymer extrusion product and Comparative Analysis of experimental results (폴리머 압출 제품의 형상예측 및 실험결과 비교분석)

  • Kim, S.H.;Na, S.H.;Yu, C.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.110-113
    • /
    • 2008
  • This study was performed to predict the shape of polymer extrusion product and to find the cause of defective products Experiments was performed to extrude the complex profile shape using PC/ABS composite resin with new profile die and cooling die. A finite element analysis for the Polymer Extrusion process considering the heat transfer and thermal deformation was also performed, and the result was compared with the experimental data. It is found that the predicted profile shape in F. E. M was similar to the experimental result and the thickness of extruded product was thin when the velocity of profile die outlet was slow than the velocity of production (2m/min).

  • PDF

RF Pulse Design and Its Slice Profile Using SLR Algorithm (SLR 알고리즘을 이용한 RF 펄스 설계 및 그 SLICE PROFILE)

  • Yi, Y.;Joo, H.Y.;Baik, W.K.;Lee, S.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.471-474
    • /
    • 1997
  • Several selective excitation pulses are used in MRI. Because of the nonlinearity of the Block equation, the pulse problem is nonlinear generally. Recently, Shinnar & Le Roux have proposed a direct solution of this problem. In this paper, we introduce the SLR algorithm and design pulses using SLR algorithm. This SLR pulse produces a specified slice profile. For example, we demonstrate the sinc function pulse with piece wise constant duration ${\Delta}t$. Further, we will design $\pi/2$ pulse and slice profile.

  • PDF

Kennicutt-Schmidt law with H I velocity profile decomposition in NGC 6822

  • Park, Hye-Jin;Oh, Se-Heon;Wang, Jing;Zheng, Yun;Zhang, Hong-Xin;de Blok, W.J.G.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.32.3-33
    • /
    • 2021
  • We present H I gas kinematics and star formation activities of NGC 6822, a dwarf galaxy located in the Local Volume at a distance of ~ 490 kpc. We perform profile decomposition of the line-of-sight velocity profiles of the high-resolution (42.4" × 12" spatial; 1.6 km/s spectral) H I data cube taken with the Australia Telescope Compact Array (ATCA). For this, we use a new tool, the so-called BAYGAUD (BAYesian GAUssian Decompositor) which is based on Bayesian Markov Chain Monte Carlo (MCMC) techniques, allowing us to decompose a line-of-sight velocity profile into an optimal number of Gaussian components in a quantitative manner. We classify the decomposed H I gas components of NGC 6822 into bulk-narrow, bulk-broad, and non_bulk with respect to their velocity and velocity dispersion. We correlate their gas surface densities with the surface star formation rates derived using both GALEX far-ultraviolet and WISE 22 micron data to examine the impact of gas turbulence caused by stellar feedback on the Kennicutt-Schmidt (K-S) law. The bulk-narrow component that resides within r25 is likely to follow the linear extension of the Kennicutt-Schmidt (K-S) law for molecular hydrogen (H2) at the low gas surface density regime where H I is not saturated.

  • PDF

Inductance profile calculate and experiment of LSRM using magnetic equivalent circuit method (자기등가회로를 이용한 LSRM 인덕턴스 프로파일 산정 및 실험)

  • Jang, S.M.;Park, J.H.;Choi, J.Y.;Cho, H.W.;You, D.J.;Sung, H.K.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1150-1152
    • /
    • 2005
  • This paper deals with inductance profile of linear switched reluctance motor. Inductance profile of LSRM calculate at align and unalign position using magnetic equivalent circuit method. Magnetic equivalent circuit method of this paper used method of reference[3],[4], but this method used modification on account difference of design specification Also, analysis result compares with data that is derived through an experiment, and proved validity.

  • PDF

An analytical study on the heat transfer of the laminar filmwise condensation on a vertical surface (수직평판에서 층류막상 응축열전달에 관한 해석적 고찰)

  • 김형섭
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.2 no.1
    • /
    • pp.21-31
    • /
    • 1980
  • Two phase boundary layer equations of laminar filmwise condensation are solved by an approximate integral method under the following condition; saturated vapour flows vertically downward over a cooled surface of uniform temperature, the condensate film is so thin that the inertia and convection terms are neglected. The following conclusions are drawn under the above assumptions. 1. free convection In case of the linear temperature profile in a liquid film, numerical results for the average coefficients of heat transfer may be expressed as N $u_{m}$=4/3,(G $r_{l}$ /4.H)$^{1}$4/ and in case of the quadratic profile, numerical results may be expressed as N $u_{m}$=2/1.682,(G $r_{l}$ /H)$^{1}$4/. 2. Forced convection When the temperature profile is assumed to be linear in a liquid film, numerical results fir the average heat transfer coefficients may be expressed as N $u_{m}$=(A, R $e_{l}$ /H)$^{1}$2/. This expression is compared with the experimental results hitherto reported; For theoretical Nusselt number (N $u_{m}$)$_{th}$<2*10$^{4}$, the experimental Nusselt number (N $u_{m}$)$_{exp}$ is on the average larger than theoretical Nusselt number (N $u_{m}$)$_{th}$ by 30%. For (N $u_{m}$)$_{th}$>2*10$^{4}$, experimental Nusselt number (N $u_{m}$)$_{exp}$ is about 1.6 times as large as theoretical Nusselt number (N $u_{m}$)$_{th}$. These large deviation may be caused by the presence of turbulence in the liquid film. In case of the quadratic temperature profile in a liquid film, numerical results for the average coefficients of heat transfer may be expressed as N $u_{m}$'=(2,A,Re/H)$^{1}$2/. This formular shows that theoretical Nusselt number (N $u_{m}$)$_{th}$ is larger than experimental Nusselt number (N $u_{m}$)$_{exp}$ by 60%. It is speculated that when the temperature difference between cooled surface and saturated vapour is small, temperature profile in a liquid film is quadratic.quadratic.. quadratic.quadratic..atic..

  • PDF

The design of high profile H.264 intra frame encoder (H.264 하이프로파일 인트라 프레임 부호화기 설계)

  • Suh, Ki-Bum
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.11
    • /
    • pp.2285-2291
    • /
    • 2011
  • In this paper, H.264 high profile intra frame encoder, which integrates intra prediction, context-based adaptive variable length coding(CAVLC), and DDR2 memory control module, is proposed. The designed encoder can be operated in 440 cycle for one-macroblock. In order to verify the encoder function, we developed the reference C from JM 13.2 and verified the developed hardware using test vector generated by reference C. The designed encoder is verified in the FPGA (field programmable gate array) with operating frequency of 200 MHz for DMA (direct memory access), operating frequency of 50 MHz of Encoder module, and 25 MHz for VIM(video input module). The number of LUT is 43099, which is about 20 % of Virtex 5 XC5VLX330.