• Title/Summary/Keyword: H-ferritin

Search Result 59, Processing Time 0.024 seconds

Expression of a Carboxy-Terminal Deletion Mutant of Recombinant Tadpole H-Chain Ferritin in Escherichia coli

  • Lee, Mi-Young;Kim, Young-Taek;Kim, Kyung-Suk
    • BMB Reports
    • /
    • v.29 no.5
    • /
    • pp.411-416
    • /
    • 1996
  • In order to study the role of the protein shell in both iron uptake and iron core formation of ferritin, we constructed a deletion mutant of the ferritin gene and expressed the mutant gene in Escherichia coli, This mutant was obtained by introducing an amber mutation at position Pro-157 and a deletion of the 19 amino acid residues at the carboxy-terminus of the recombinant tadpole H-chain ferritin. The deleted amino acids correspond to E-helix forming the hydrophobic channel in the protein. E. coli harboring the plasmid pTHP157, which contains the deleted gene, was grown at $23^{\circ}C$ in the presence of 0.1 mM IPTG, and the induced protein appeared to be partly soluble. Nondenaturing polyacrylamide gel electrophoresis showed that the expressed mutant H-chains coassemble into holoprotein, suggesting that E-helix is not necessary for assembly of the subunits as reported for human H-chain ferritin. Its ability in iron core formation was proven in an Fe staining gel, the result disagreeing with the observation that the hydrophobic channel is necessary for iron core formation in human H-chain ferritin.

  • PDF

Molecular cloning and expression analysis of a ferritin H subunit from rock bream, Oplegnathus fasciatus (돌돔 ferritin H 유전자의 클로닝과 발현 분석)

  • Kwon, Mun-Gyeong;Jeong, Ji-Min;Kim, Ju-Won;Park, Chan-Il
    • Journal of fish pathology
    • /
    • v.26 no.3
    • /
    • pp.295-301
    • /
    • 2013
  • Ferritin is an evolutionarily conserved protein that plays an important role in iron storage and detoxification. In this study, the gene encoding a ferritin H subunit homologue (RbFH) was cloned from rock bream (Oplegnathus fasciatus) and analyzed at the expression. The full-length ferritin H cDNA was 1162 bp long and contained an open reading frame (ORF) of 531 bp that encoded 177 amino acid residues with a predicted molecular mass of 20.8 kDa. The 5' UTR was 297 bp in length, and the 3' UTR 298 bp, and preceded by a 5'-untranslated region that contains a putative Iron Regulatory Element (IRE). The deduced amino acid sequence of RbFH shares extensive sequence identities with the H ferritins of a number of fish species and contains the ferroxidase center that is preserved in ferritin H subunits. Examination of tissue specific expression indicated that RbFH expression was most abundant in PBLs, RBC, liver and muscle.

Refolding of Fusion Ferritin by Gel Filtration Chromatography(GFC)

  • Kim, Hyung-Won;Kim, In-Ho
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.6
    • /
    • pp.500-504
    • /
    • 2005
  • Fusion ferritin (heavy chain ferritin, $F_H+$ light chain ferritin, $F_L$), an iron-binding protein, was primarily purified from recombinant Escherichia coli by two-step sonications with urea [1]. Unfolded ferritin was refolded by gel filtration chromatography (GFC) with refolding enhancer, where 50 mM Na-phosphate (pH 7.4) buffer containing additives such as Tween 20, PEG, and L-arginine was used. Ferritin is a multimeric protein that contains approximately 20 monomeric units for full activity. Fusion ferritin was expressed in the form of inclusion bodies (IBs). The IBs were initially solubilized in 4 M urea denaturant. The refolding process was then performed by decreasing the urea concentration on the GFC column to form protein multimers. The combination of the buffer-exchange effect of GFC and the refolding enhancers in refolding buffer resulted in an efficient route for producing properly folded fusion ferritin.

Repair of Iron Deficiency in Rats by the Intake of Recombinant Yeast Producing Human H-ferritin (훼리틴 생산 재조합 효모의 철분 결핍성 빈혈 개선 효과)

  • Hwang Eun-Hee
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.16 no.1
    • /
    • pp.93-98
    • /
    • 2006
  • This study examined whether or not the iron that is accumulated in the recombinant microbes that produce ferritin is bioavailable to rats with iron deficiency. Rats induced with iron deficiency were treated with iron preparations of $Fe(NH_4)_2(SO_4)_2$, horse spleen ferritin, control yeast, and ferritin-producing recombinant yeast for 14 days. The bioavailability of iron was examined by measuring hemoglobin concentration, hematocrit value, and tissue iron stores. Differences between dietary groups were determined by one-way ANOVA, at the level of significance p<0.05. Based on hemoglobin concentration and hematocrit value, iron in $Fe(NH_4)_2(SO_4)_2$, horse spleen ferritin, and ferritin-producing yeast were bioavailable in rats and cured iron deficiency. The efficacy of ferritin and ferritin-producing yeast was confirmed in establishing tissue iron stores after the induction of iron deficiency. The iron sources of ferritin and the ferritin-producing yeast seemed to be as effective for the recovery from iron deficiency as the iron compounds of ferric citrate and ferrous ammonium sulfate. The results suggest that the iron stored in ferritin of the recombinant yeast is bioavailable, and that the recombinant yeast may contribute widely as a source of iron to resolve the global problem of iron deficiency.

  • PDF

Expression of Human Heavy-Chain and Light-Chain Ferritins in Saccharomyces cerevisiae for Functional Foods and Feeds (Saccharomyces cerevisiae을 이용한 사람의 H-, L-ferritins 발현 연구)

  • Han, Hye-Song;Lee, Joong-Lim;Park, Si-Hong;Kim, Jae-Hwan;Kim, Hae-Yeong
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.3
    • /
    • pp.221-226
    • /
    • 2008
  • To produce human ferritins in yeast, human H-chain and L-chain ferritins were amplified from previously cloned vectors. Each amplified ferritin gene was inserted into the pYES2.1/V5-His-TOPO yeast expression vector under the control of the GAL1promoter. Western blot analysis of the recombinant yeast cells revealed that H-and L-chain subunits of human ferritin were expressed in Saccharomyces cerevisiae. Atomic absorption spectrometry (AAS) analysis demonstrated that the intracellular content of iron in the ferritin transformant was 1.6 to 1.8-fold higher than that of the control strain. Ferritin transformants could potentially supply iron-fortified nutrients for food and feed.

Functional Assembly of Recombinant Human Ferritin Subunits in Pichia pastoris

  • Lee, Jung-Lim;Park, Cheon-Seok;Kim, Hae-Yeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.10
    • /
    • pp.1695-1699
    • /
    • 2007
  • Ferritin is an iron storage protein found in most living organisms as a natural assembled macromolecule. For studying the functional ability of the ferritin assembly, human H- and L-ferritins were expressed and purified from Pichia pastoris strain GS115. The recombinant H- and L-ferritins showed a globular form with transmission electron microscopy. The rate of iron uptake for H-ferritin was significantly faster than that for the L-ferritin in vitro. By gel permeation chromatography analysis, recombinant ferritins were confirmed as multimeric subunits with high molecular weight and it was indicated that assembled subunits were able to store iron in vivo.

Influence of Site-Directed Mutagenesis on Protein Assembly and Solubility of Tadpole H-chain Ferritin

  • Kim, Kyung-Suk
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.3 no.2
    • /
    • pp.67-70
    • /
    • 1998
  • In order to understand the influence of ferroxidase center on the protein assembly and solubility of tadpole ferrin, three mutant plasmids, pTH58K, pTH61G, and pTHKG were constructed with the aid of site-directed mutagenesis and mutant proteins were produced in Eshcerichia coli. Mutant ferritin H-subunits produced by the cells carrying plasmids pTH58K and pTHKG were active soluble proteins, whereas the mutant obtained from the plasmid pTH61G was soluble only under osmotic stress in the presence obtained from the plasmid pTH61G was soluble only under osmotic stress in the presence of sorbitol and betaine. Especially, the cells carrying pTH61G together with the plasmid pGroESL harboring the molecular chaperone genes produced soluble ferritin. The mutant ferritin H-subunits were all assembled into ferritin-like holoproteins. These mutant ferritns were capable of forming stable iron cores, which means the mutants are able to accumulate iron with such modified ferroxidase sites. Further functional analysis was also made on the individual amino acid residues of ferroxidase center.

  • PDF

Purification and Glycosylation Pattern of Human L-Ferritin in Pichia pastoris

  • Lee, Jong-Lim;Yang, Seung-Nam;Park, Cheon-Seok;Jeoung, Doo-Il;Kim, Hae-Yeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.68-73
    • /
    • 2004
  • Ferritin is an iron storage protein found in most living organisms. For expression and industrial use, human light chain ferritin (L-ferritin) was cloned from human liver cDNA library and expressed in Pichia pastoris strain GS115. The recombinant L-ferritin in Pichia pastoris was glycosylated. In a fed-batch culture, the cell mass reached about 57 g/l of dry cell weight, and the L-ferritin in the cell was increased to about 95 mg/l after 150 h. In an atomic absorption spectrometry analysis, the intracellular content of iron in the L-ferritin transformant was measured as $1,694{\pm}85\;\mu\textrm{g}g/g$, which is 5.4-fold more than that of the control strain. This L-ferritin transformant could serve as iron-fortified nutrients in animal feed stock.

Enhanced Expression of High-affinity Iron Transporters via H-ferritin Production in Yeast

  • Kim, Kyung-Suk;Chang, Yu-Jung;Chung, Yun-Jo;Park, Chung-Ung;Seo, Hyang-Yim
    • BMB Reports
    • /
    • v.40 no.1
    • /
    • pp.82-87
    • /
    • 2007
  • Our heterologous expression system of the human ferritin H-chain gene (hfH) allowed us to characterize the cellular effects of ferritin in yeasts. The recombinant Saccharomyces cerevisiae (YGH2) evidenced impaired growth as compared to the control, which was correlated with ferritin expression and with the formation of core minerals. Growth was recovered via the administration of iron supplements. The modification of cellular iron metabolism, which involved the increased expression of high-affinity iron transport genes (FET3 and FTR1), was detected via Northern blot analysis. The findings may provide some evidence of cytosolic iron deficiency, as the genes were expressed transcriptionally under iron-deficient conditions. According to our results examining reactive oxygen species (ROS) generation via the fluorescence method, the ROS levels in YGH2 were decreased compared to the control. It suggests that the expression of active H-ferritins reduced the content of free iron in yeast. Therefore, present results may provide new insights into the regulatory network and pathways inherent to iron depletion conditions.

Secretion of Ferritin Protein of Periserrula leucophyryna in Bacillus subtilis and Its Feed Efficiency (고초균에서 흰이빨참갯지렁이 페리틴 단백질의 분비 및 사료 효율성)

  • Choi, Jang Won
    • KSBB Journal
    • /
    • v.31 no.2
    • /
    • pp.105-112
    • /
    • 2016
  • Ferritin is known to regulate iron metabolism and maintain iron in a variety of the eukaryotic organisms. The region encoding the mature ferritin (0.47 kb, H-type) of Periserrula leucophryna was amplified using the designed primers including restriction enzyme site and termination codon and subcloned in frame to the pRBAS secretion vector containing the signal sequence, RBS, and promoter of amylase gene (E. coli-Bacillus shuttle vector), resulting in recombinant pRBAS-PLF vector. Recombinant ferritin (18 kDa) was correctly processed and secreted from Bacillus subtilis LKS strain harboring the pRBAS-PLF vector and quantitatively analyzed by SDS-PAGE and western blot, respectively. Secretion of the ferritin was optimized by culture conditions (host, medium, temperature, nitrogen source) in 3 L batch culture and 5 L jar fermenter. Finally. the ferritin was largely produced using 50 L fermenter as the following conditions; at $30^{\circ}C$, 150 rpm, 1 vvm in Bacillus subtilis LKS using PY medium. The secreted ferritin was maximally measured (approximately 177.6 ug/ml) when the cell density reached to 14.4 at $OD_{600}$ (20 h incubation). The iron binding activity was confirmed by Perls' staining in 7.5% non-denaturing gel, indicating that the multimeric ferritin (composed of 24 subunits) was formed in the culture broth after secretion. Biologically, the culture broth and powder type containing ferritin were tested for possibility as feed additive in chicken broiler. As a result, the ferritin stimulated the growth of chick broil and improved feed efficiency and production index.