• Title/Summary/Keyword: H-beam

Search Result 1,981, Processing Time 0.023 seconds

A Experimental Study on Bending Behaviors of Prestressed Hot-rolled H-Beam (프리스트레스된 압연강재보(H-BEAM)의 휨 거동에 대한 실험적 연구)

  • Yhim, Sung Soon;Jeong, Chan Haek
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.2
    • /
    • pp.239-250
    • /
    • 2006
  • In this study, the experimental bending behaviors of an H-secti on-steel-beam-attached high-strength steel plate or steel beam were analyzed. Its structural performance was verified by comparing the results of the experiment and the analysis that were conducted. In fabricating an unprestressed composite beam using two members that have different strengths, the generated slip on the joint in proport problem because of the redistribution of force caused by the lose state of the joint. Therefore, when fabricating composite beams, it is important to load them with prestressed forces. Based on the results of the experiment that was conducted, the prestressed composite-steel-beam-attached steel plate or beam has a higher bending resistance and load-carrying capacit

Establishment of Gun Head Unit for Electron Beam Machining System (전자빔건 헤드유니트의 설계와 제작)

  • Kang J.H.;Lee C.H.;Choi J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1875-1878
    • /
    • 2005
  • It is not efficient and scarcely out of the question to use commercial expensive electron beam lithography system widely used for semiconductor fabrication process for the manufacturing application field of various devices in the small business scope. Then scanning electron microscope based electron beam machining system is maybe regarded as a powerful model can be used for it simply. To get a complete suite of thus proper system, column unit build up with electron beam gun head unit is necessarily required more than anything else to modify scanning electron microscope. In this study, various components included ceramic isolation plate and main body which are essentially constructed for electron beam gun head unit are designed and manufactured. And this electron beam gun head unit will be used for next connected study in the development step of scanning electron microscope based electron beam machining system.

  • PDF

Effect of Cross Beams on Live Load Distribution in Rolled H-beam Bridges (압연형강(H형강) 거더교의 가로보가 활하중 횡분배에 미치는 영향)

  • Yoon, Dong Yong;Eun, Sung Woon
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.5
    • /
    • pp.535-542
    • /
    • 2006
  • In this study, the effects of cross beams on the lateral distribution of live loads in composite rolled H-beam girder bridges, were investigated through three-dimensional finite element analysis. The parameters considered in this study were the inertial moment ratio between the main girder and the cross beam, the presence of the cross beam, and the number of cross beams. The live load lateral distribution factors were investigated through finite element analysis and the customary grid method. The results show that there was no difference between the bridge models with and without a cross beam. The cross beam of the beam and frame types also showed almost the same live load lateral distribution factors. However, the finite element analysis showed that the concrete slab deck plays a major role in the lateral distribution of a live load, and consequently, the effect of the cross beam is not so insignificant that it can be neglected.

Experimental Study on the Capacity of Holed RC Beam Mixed with Waste Tire Particles (폐타이어 유공 철근콘크리트보의 내력에 관한 실험적연구)

  • Son, Ki-Sang;Lee, Won-Gyun
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.4 s.72
    • /
    • pp.54-62
    • /
    • 2005
  • This Study is to find out how RC beam mixed with sawdust acts comparing with normal beam without sawdust mixture, and how they can be applied to the actual structural frame, despite a Int that they are mixed with waste material : saying sawdust. ED3H1, ED3H2, ED5H1, ED5H2, ED3H1UB, ED5H1UB, ED3H2L, ED5H2L and Normal without sawdust mixture are main factor to be tested here in order to apply them to the actual case. D and H means diameter 3cm or 5cm, and holes one and two respectively. And all variables are tested with each two for one variables. Test results are compared using crack diagrams and strain & loads. There are eleven(11)% capacity decrease between ED 3H1 and ED5H1 in rebar, strain. Left and right side crack shapes are much similar in variable ED3H2L having maximum capacity 14.5 tone. ED5H2L having maximum capacity thirteen(13)tone, in case of normal 19.6 tone. Two holes in beam rather on the longitudinal direction than on the forcing direction can be more effective to keep the original capacity of the beam because this case can distribute load more uniformly. There is 33% capacity decreased in case of diameter five(5)cm, compared to diameter three(3)cm. Two holes give thirty nine(39) percent capacity decrease than one of diameter three(3)cm.

Assessment of Thermal Stress in Temporary Bridge (가교량의 온도응력 평가)

  • Park, Young Hoon;Lee, Seung Yong;Byun, Yun Joo;Chang, Dong Il
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.1 s.34
    • /
    • pp.1-10
    • /
    • 1998
  • The temporary steel bridges which are constructed for detour and constructional expediency are consisted of H-beams(as superstructure) and H-piles(as substructure). Because these members are fastened by high-tension bolts, there are no expansion joints in these bridges. So, these kinds of bridges have no system which can relieve the excessive thermal stress. In this investigation, monitoring system was set up at temporary steel bridge and stress and temperature changes of H-beam are monitored. From these measured data, it is analyzed that the relationship between ambient and main-girder temperature change, between temperature and stress change. With these analyses, it is resulted that the thermal stress take main part of stress variation in this bridge and the restrain of thermal longitudinal displacement of H-pile. In addition, because the connection part of H-beam to H-beam is weak in the continuous spans, the sub-modelling is well apt to reflect the effect of thermal stress.

  • PDF

Experimental Study on the Structural Behavior of Concrete-Filled Circular Tubular Column to H-Beam connections without Diaphragm (다이아프램이 없는 콘크리트 충전 원형강관 기둥-H형강 보 접합부의 구조적 거동에 관한 실험적 연구)

  • Kang, Hyun Sik;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.1 s.30
    • /
    • pp.13-22
    • /
    • 1997
  • This paper is concerned with an experimental study on structural behavior of Concrete-Filled Circular Tubular(CFCT) column to H-beam connections. The important parameters are the number of inner reinforced rib and the width of H-beam flange(100, 150, 200mm) with variable column thickness(5.8mm, 9.2mm, 12.5mm) around the joint between CFCT and H-beam. Test results are summarized for the displacement, strength, initial stiffness, failure mode and energy absorption capacity of each specimen. The purpose of this paper is to investigate the initial stiffness and the strength of connections to evaluate the structural behavior of the CFCT column to H-beam connections. From the discussion about the test results, the basic data for non diaphragm connection design would be suggested.

  • PDF

Seismic Capacity of Reinforced Concrete Frames Retrofitted with H-beam Frame (H형강 프레임으로 보강한 철근 콘크리트 골조의 내진성능 평가)

  • Kim, Min Sook;Choi, Hosoon;Song, Seung Eon;Lee, Young Hak
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.127-132
    • /
    • 2013
  • This study proposed proposes a retrofitting method using an H-beam frame to improve the seismic performance of non-seismic designed reinforced concrete frames. To evaluate the seismic performance with the H-beam frames, a cyclic lateral load test was performed and the experimental result was compared with the bared frame, and a masonry infilled RC frame. The results was were analyzed regarding aspects of the load-displacement hysteresis behavior, effective stiffness, displacement ductility, and cumulative energy dissipation. AlsoIn addition, it was possible to prove both an increase of in the maximum load capacity, effective stiffness, and energy dissipation capacity using the H-beam frame.

A study on Reinforcement Methods to Improve the Usability of the H-beam Backfill Installation Part in Top-Down Construction Method (역타공법 뒷채움재 설치 구간의 사용성 개선을 위한 보강 방안 연구)

  • Shim, Hak-Bo;Jeon, Hyun-Soo;Seok, Won-Kyun;Park, Soon-Jeon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.180-180
    • /
    • 2021
  • Recently, structural damage and defect has occurred in the H-beam backfill installation part of Top-Down construction method. In order to secure structural safety and usability in the adjacent section of the backfilling method, It turns out that it is necessary to analyze by dividing into various cases. The H-beam backfill installation section is divided into the case of adding a vertical plate inside the slab, adding a shear stud, adding a reinforcing bar, changing the thickness of the pressure plate, and filling the H-beam backfill with mortar. Ansys modeling was performed and an appropriate solution was suggested by analysis.

  • PDF

Shape Extraction of Stiffeners of H-beam using Topologically Structural Optimization (위상최적설계를 이용한 H형강 부재의 스티프너 형상탐색)

  • Jung, Wonsik;Banh, Thien Thanh;Lee, Dongkyu
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.1
    • /
    • pp.15-23
    • /
    • 2023
  • In this work, we deal with the feasibility of structural topology optimization for beam designs using retrofits that optimally allocates the reinforcement to the web under the condition that designers set bolt regions for H-beams of different dimensions. Mean compliance or minimal strain energy is considered for the optimization. Volume fraction is given to the design space to assign appropriate steel material quantities. The purpose of this study is to evaluate optimal shapes of stiffeners with the maximum rigidity that improves the axial and shear performance of the H-beam and to satisfy a given safety design standard of H-beam and stiffeners in case arbitrary load effect and resistances. Finally, the effectiveness of stiffness-based topology optimization on stiffeners is verified with several practical applicable examples.