• Title/Summary/Keyword: H-Section Steel

Search Result 224, Processing Time 0.024 seconds

The Corrosion Behavior of Li/K Carbonate Melts with CaCO3 Additives on Separator Plate in the Molten Carbonate Fuel Cell in the Anode Environments

  • Cho, Kyehyun;Lee, Chul-Hwan;Sung, Zu-Hwan
    • Corrosion Science and Technology
    • /
    • v.5 no.4
    • /
    • pp.129-136
    • /
    • 2006
  • High temperature corrosion behavior of AISI-type 316L stainless steel for the MCFC(molten carbonate fuel cell) bipolar application was studied by immersion test and penetration attack method in anode environment ($650^{\circ}C$, $Li_2CO_3/K_2CO_3=62/38$ mol%, $H_2/CO_2=80/20$ vol%) without or with different $CaCO_3$ content. Not only immersion test method but also morphological observation of samples in the carbonate melts are adopted as experimental methods. With aid of the morphological observation of cross section of samples immersed in a carbonate melt was possible to obtain penetration attack. The concentration effect of $CaCO_3$ inhibitor was investigated in order to verify the optimum concentration for practical application in MCFC stack operation. The corrosion rate in the presence of $CaCO_3$ was proven to be decreased as a function of $CaCO_3$ concentration. The corrosion rate in the presence of $CaCO_3$ was measured with a value of 6.9 mpy which is 2.4 times lower than that of inhibitor-free electrolyte. The cross section microscopy revealed that the internal penetration by oxidation in molten carbonate is very severe. In this case, the attack was occurred not only dissolution loss in the electrolyte by corrosion reaction but also weight gain through oxide layer by internal penetration.

Seismic Performance of Square RC Column Confined with Spirals (나선철근으로 횡구속된 정사각형 RC 기둥의 내진성능)

  • Ko, Seong Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.5
    • /
    • pp.88-97
    • /
    • 2012
  • The objective of this research is to investigate the seismic performance and flexure-shear behavior of square reinforced concrete bridge piers with solid and hollow cross section. Test specimens were nonseismically designed with the aspect ratio 4.5 Two reinforced concrete columns were tested under constant axial load while subjected to lateral load reversals with increasing drift levels. Longitudinal steel ratio was 2.217 percent. The transverse reinforcement ratio As/($s{\cdot}h$), corresponding to 58 percent of the minimum lateral reinforcement required by Korean Bridge Design Specifications for seismic detailing, which represent existing columns not designed by the current seismic design specifications or designed by limited ductility concept. This study are to provide quantitative reference data for the limited ductility design concept and tendency for performance or damage assessment based on the performance levels such as cracking, yielding, collapse, etc. Failure behavior, ultimate displacement/drift ratio, displacement ductility, response modification factor, equivalent viscous damping ratio, residual deformation, effective stiffness, plastic hinge length, strain of reinforcements and nonlinear analysis are investigated and discussed in this paper.

Improvement of Flexural Performance for Deep-Deck Plate using Cap Plate (캡플레이트를 이용한 장스팬용 춤이 깊은 데크의 휨성능 개선)

  • Park, K.Y.;Nam, Y.S.;Choi, Y.H.;Kim, Y.H.;Choi, S.M.
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.5
    • /
    • pp.555-567
    • /
    • 2013
  • Slim floor system using deep decks has been developed and employed in Europe to reduce the floor height of steel structures. Although long span buildings involving the issue of reducing floor height are being increasingly built in Korea, employing deep decks in more than 7m long span structures is likely to cause problems associated with excessive deflection. This study is applied to the long-span concrete casting of the deep deck plate usability of deflection due to bending and torsional instability of open cross-section, as a way to improve the problem of cap plates are suggested, and the optimum length of reinforcement and location are derived from theoretic estimation. The cap plates are placed on the deep decks with regular intervals to overcome the instability of open sections, improve the stiffness of the sections and control the deflection at the centers. The improvement in flexural capacity associated with the location of the cap plates and the length of reinforcement are verified through analysis and test.

Processing and Mechanical Properties of Mullite Fiber / Fe Composite

  • Niibo, Yoshihide;Yuchi, Kazuhiro;Sameshima, Soichiro;Hirata, Yoshihiro
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 2000.06a
    • /
    • pp.195-214
    • /
    • 2000
  • The high-speed steel (shorten as HSS) consists of Fe and several kinds of transition metal carbides. The cutting tools or wear-resistant materials made from HSS experience relatively high thermal shock because a coolant such as water or oil is flowed over the surface of heated HSS. The purpose of this research is to increase the hardness, strength, fracture toughness and thermal shock resistance of HSS. A possible strategy is to incorporate a hard ceramic material with high strength in HSS matrix. This paper describes the processing, microstructure and mechanical properties of the oriented unidirectional mullite fiber/HSS composite. The unidirectional mullite fibers of 10${\mu}{\textrm}{m}$ diameter were dispersed by the ultrasonic irradiation of 38 kHz in an ethylenglycol suspension containing HSS powder of 11${\mu}{\textrm}{m}$ median size. The dried green composites with 4-68 vol% fibers were hot-pressed for 2h at 100$0^{\circ}C$ in Ar atmosphere under a pressure of 39 MPa. The higher density was achieved in the composite with a lower content of fibers. The oriented unidirectional fibers were well dispersed in the HSS matrix. The average distance between the center of fibers in the cross section was close to the value calculated from the fiber fraction. No reaction occurred at the interfaces between HSS and mullite fibers in the composites. The composite with 13.6 vol% fibers showed 100 MPa of four point flexural strength at room temperature. The thermal expansion of composite with heating was influenced by the orientation of mullite fibers.

  • PDF

Reducing Effect of Wind-induced Vibration on Rectangular Model of Super-Highrise Building with Length of Corners Cutting (초고층 건물의 각주형 단면에 대한 공력 불안정 진동 및 풍진 저감 효과에 관한 실험적 연구)

  • Cheong, Yung-Bea
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.3
    • /
    • pp.301-311
    • /
    • 2001
  • For a rectangular-highrise building with aspect ratio about six, the resonant wind speed of wind-induced vibration or galloping start wing speed can be within the design wind speed. The wind-induced vibration and galloping of highrise building with aspect ratio $H/\sqrt{DB}=6$, side ratio D/B=1 to 2 at intervals of 1/4 D/B were investigated in smooth flow. For the reducing effect of wind-induced vibration of highrise building, rectangular-highrise building with corners cutting about side ratio D/B=2 were investigated. Experimental results show that in the smooth flow non corners-cutting cases have tendency of increasing wind-induced vibration and galloping vibration then corner-cutting section. Therefore, the wind-induced vibrations on rectangular-highrise buildings were reduced effectively by using corner cut method.

  • PDF

Flutter analysis of Stonecutters Bridge

  • Hui, Michael C.H.;Ding, Q.S.;Xu, Y.L.
    • Wind and Structures
    • /
    • v.9 no.2
    • /
    • pp.125-146
    • /
    • 2006
  • Stonecutters Bridge of Hong Kong is a cable-stayed bridge with two single-column pylons each 298 m high and an aerodynamic twin deck. The total length of the bridge is 1596 m with a main span of 1018 m. The top 118 m of the tower will comprise structural steel and concrete composite while the bottom part will be of reinforced concrete. The bridge deck at the central span will be of steel whilst the side spans will be of concrete. Stonecutters Bridge has adopted a twin-girder deck design with a wide clear separation of 14.3 m between the two longitudinal girders. Although a number of studies have been conducted to investigate the aerodynamic performance of twin-girder deck, the actual real life application of this type of deck is extremely limited. This therefore triggered the need for conducting the present studies, the main objective of which is to investigate the performance of Stonecutters Bridge against flutter at its in-service stage as well as during construction. Based on the flutter derivatives obtained from the 1:80 scale rigid section model experiment, flutter analysis was carried out using 3-D finite element based single parameter searching method developed by the second author of this paper. A total of 6 finite element models of the bridge covering the in-service stage as well as 5 construction stages were established. The dynamic characteristics of the bridge associated with these stages were computed and applied in the analyses. Apart from the critical wind speeds for the onset of flutter, the dominant modes of vibration participating in the flutter vibration were also identified. The results indicate that the bridge will be stable against flutter at its in-service stage as well as during construction at wind speeds much higher than the verification wind speed of 95 m/s (1-minute mean).

Seismic Performance Evaluation of SRC Composite Column using Direct Displacement Based Design Method (직접변위기반 설계법에 의한 SRC 합성기둥의 내진성능평가)

  • Jung, In-Kju;Park, Soon-Eung;Kim, Dong-Hyuk
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.3
    • /
    • pp.63-70
    • /
    • 2012
  • In this study, the displacement-based design concept, the performance by the existing reinforced concerte column and steel reinforced concrete composite column for SRC purchased the maximum design ground acceleration improvement compared to the performance design. SRC have several advantages such as strength enhancement and high ductility. H-beam or steel tubes were used for embedded elements of the SRC composite columns. SRC cross-section for the P-M diagram and analysis on the nominal bending monent SRC designed for composite columns for disparity estimation is presented to the displacement-based seismic design. Performance improvement of the performance-based design performance targets for the design seismic displacement and design criteria for the direct displacement-based design methods and to improve the seismic performance due to the displacement coefficient method is proposed to design. SRC compared with the RC column designed to improve the performance and displacement ductility ratio displacement results in the performance design results showed significantly improved performance.

Experimental Study of Structural Behavior of Two-Way Beam String Structures (양방향 하중 저항 언더 텐션 시스템의 구조 성능에 대한 실험 연구)

  • Seo, Minhee;Lee, Seunghye;Baek, Kiyoul;Jeong, Jinwoo;Kim, Sun-Myung;Lee, Jaehong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.3
    • /
    • pp.93-103
    • /
    • 2018
  • This study showed that experimental study of inelastic nonlinear behavior of two-way beam string structures. General large span structures consisting of beam members have large moment and long cross section of area. In order to decrease these excessive moment and deflection, the two-way beam string structures composed of H-Beam, strut, and cable elements were proposed. In the two-way string beam, the cable with the prestress improves force distribution of some weight reduction. Two systems made of structural steel and cables were tested. The nonlinear behaviour of the two-way beam string structures studied by using finite element model and compared to experimental results. The displacement of the LVDT in the center of the beam correspond with the ABAQUS results. 2,200MPa cable can afford to bear breaking load than 1,860MPa cable. The two-way beam string structures is correlated to the finite element model and the experimental results. In consequence, It showed that the system with two-way cables exhibits much better structural performances than H-Beam structures and beam with cable.

Flow-accelerated corrosion assessment for SA106 and SA335 pipes with elbows and welds

  • Kim, Dong-Jin;Kim, Sung-Woo;Lee, Jong Yeon;Kim, Kyung Mo;Oh, Se Beom;Lee, Gyeong Geun;Kim, Jongbeom;Hwang, Seong-Sik;Choi, Min Jae;Lim, Yun Soo;Cho, Sung Hwan;Kim, Hong Pyo
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.3003-3011
    • /
    • 2021
  • A FAC (flow-accelerated corrosion) test was performed for a straight pipe composed of the SA335 Gr P22 and SA106 Gr B (SA106-SA335-SA106) types of steel with welds as a function of the flow rate in the range of 7-12 m/s at 150 ℃ and with DO < 5 ppb at pH levels ranging from 7 to 9.5 up to a cumulative test time of 7200 h using the FAC demonstration test facility. Afterward, the experimental pipe was examined destructively to investigate opposite effects as well as entrance effects. In addition, the FAC rate obtained using a pipe specimen with a 50 mm inner diameter was compared with the rate obtained from a rotating cylindrical electrode. The effects of the complicated fluid flows at the elbow and orifice of the pipeline were also evaluated using another test section designed to examine the independent effects of the orifice and the elbow depending on the distance and the combined effects on orifice and elbow. The tests were performed under the following conditions: 130-150 ℃, DO < 5 ppb, pH 7 and a flow rate of 3 m/s. The FAC rate was determined using the thickness change obtained from commercial room-temperature ultrasonic testing (UT).

Cyclic Seismic Performance of RBS Weak-Axis Welded Moment Connections (RBS 약축 용접모멘트접합부의 내진성능 평가)

  • Lee, Cheol Ho;Jung, Jong Hyun;Kim, Sung Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.6
    • /
    • pp.513-523
    • /
    • 2015
  • In steel moment frames constructed of H-shapes, strong-axis moment connections should be used for maximum structural efficiency if possible. And most of cyclic seismic testing, domestic and international, has been conducted for strong-axis moment connections and cyclic test data for weak-axis connections is quite limited. However, when perpendicular moment frames meet, weak-axis moment connections are also needed at the intersecting locations. Especially, both strong- and weak-axis moment connections have been frequently used in domestic practice. In this study, cyclic seismic performance of RBS (reduced beam section) weak-axis welded moment connections was experimentally investigated. Test specimens, designed according to the procedure proposed by Gilton and Uang (2002), performed well and developed an excellent plastic rotation capacity of 0.03 rad or higher, although a simplified sizing procedure for attaching the beam web to the shear plate in the form of C-shaped fillet weld was used. The test results of this study showed that the sharp corner of C-shaped fillet weld tends to be the origin of crack propagation due to stress concentration there and needs to be trimmed for the better weld shape. Different from strong-axis moment connections, due to the presence of weld access hole, a kind of CJP butt joint is formed between the beam flange and the horizontal continuity plate in weak-axis moment connections. When weld access hole is large, this butt joint can experience cyclic local buckling and subsequent low cycle fatigue fracture as observed in this testing program. Thus the size of web access hole at the butt joint should be minimized if possible. The recommended seismic detailing such as stickout, trimming, and thicker continuity plate for construction tolerance should be followed for design and fabrication of weak-axis welded moment connections.