• Title/Summary/Keyword: H-PT

Search Result 914, Processing Time 0.031 seconds

Hydrogen sensor using Pt-loaded porous In2O3 nanoparticle structures (백금 담지 다공성 산화인듐 나노입자 구조를 이용한 수소센서)

  • Sung Do Yun;Yoon Myung;Chan Woong Na
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.6
    • /
    • pp.420-426
    • /
    • 2023
  • We prepared a highly sensitive hydrogen (H2) sensor based on Indium oxides (In2O3) porous nanoparticles (NPs) loaded with Platinum (Pt) nanoparticle in the range of 1.6~5.7 at.%. In2O3 NPs were fabricated by microwave irradiation method, and decorations of Pt nanoparticles were performed by electroless plating on In2O3 NPs. Crystal structures, morphologies, and chemical information on Pt-loaded In2O3 NPs were characterized by grazing-incident X-ray diffraction, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, respectively. The effect of the Pt nanoparticles on the H2-sensing performance of In2O3 NPs was investigated over a low concentration range of 5 ppm of H2 at 150-300 ℃ working temperatures. The results showed that the H2 response greatly increased with decreasing sensing temperature. The H2 response of Pt loaded porous In2O3 NPs is higher than that of pristine In2O3 NPs. H2 gas selectivity and high sensitivity was explained by the extension of the electron depletion layer and catalytic effect. Pt loaded porous In2O3 NPs sensor can be a robust manner for achieving enhanced gas selectivity and sensitivity for the detection of H2.

CO and C3H8 Oxidations over Supported Co3O4, Pt and Co3O4-Pt Catalysts: Effect on Their Preparation Methods and Supports, and Catalyst Deactivation (Co3O4, Pt 및 Co3O4-Pt 담지 촉매상에서 CO/C3H8 산화반응: 담체 및 제조법에 따른 영향과 촉매 비활성화)

  • Kim, Moon-Hyeon;Kim, Dong-Woo;Ham, Sung-Won
    • Journal of Environmental Science International
    • /
    • v.20 no.2
    • /
    • pp.251-260
    • /
    • 2011
  • $TiO_2$- and $SiO_2$-supported $Co_3O_4$, Pt and $Co_3O_4$-Pt catalysts have been studied for CO and $C_3H_8$ oxidations at temperatures less than $250^{\circ}C$ which is a lower limit of light-off temperatures to oxidize them during emission test cycles of gasoline-fueled automotives with TWCs (three-way catalytic converters) consisting mainly of Pt, Pd and Rh. All the catalysts after appropriate activation such as calcination at $350^{\circ}C$ and reduction at $400^{\circ}C$ exhibited significant dependence on both their preparation techniques and supports upon CO oxidation at chosen temperatures. A Pt/$TiO_2$ catalyst prepared by using an ion-exchange method (IE) has much better activity for such CO oxidation because of smaller Pt nanoparticles, compared to a supported Pt obtained via an incipient wetness (IW). Supported $Co_3O_4$-only catalysts are very active for CO oxidation even at $100^{\circ}C$, but the use of $TiO_2$ as a support and the IW technique give the best performances. These effects on supports and preparation methods were indicated for $Co_3O_4$-Pt catalysts. Based on activity profiles of CO oxidation at $100^{\circ}C$ over a physical mixture of supported Pt and $Co_3O_4$ after activation under different conditions, and typical light-off temperatures of CO and unburned hydrocarbons in common TWCs as tested for $C_3H_8$ oxidation at $250^{\circ}C$ with a Pt-exchanged $SiO_2$ catalyst, this study may offer an useful approach to substitute $Co_3O_4$ for a part of platinum group metals, particularly Pt, thereby lowering the usage of the precious metals.

A Study on Highly Dispersed Pt/$Al2O_3$ Catalyst for Preferential CO Oxidation (고분산 담지된 Pt/$Al2O_3$ 촉매의 선택적 CO 산화반응 특성에 관한 연구)

  • Kim, Ki Hyeok;Koo, Kee Young;Jung, UnHo;Roh, Hyeon Seog;Yoon, Wang Lai
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.157.1-157.1
    • /
    • 2011
  • 선택적 CO 산화반응(PrOx)에 사용되는 촉매 중 Pt, Ru, Rh 등의 귀금속 계 촉매들은 비귀금속 계 촉매에 비해 활성이 좋은 반면 가격이 비싸다는 경제적인 제한점이 있다. 따라서 소량의 귀금속을 사용하여 높은 활성의 촉매를 제조하고자 활성금속의 고분산 담지 방법에 대한 연구가 이루어지고 있다. 본 연구에서는 담체인 ${\gamma}-Al_2O_3$ 표면에 활성금속인 Pt의 고분산 담지를 위해 증착-침전법(Deposition-precipitation)을 적용하였으며 용액의 pH 변화에 따른 Pt 금속 입자의 분산도에 대한 영향을 살펴보았다. Pt의 함량은 1wt%로 고정하였고 침전제로 NaOH를 사용하여 용액의 pH를 pH 7.5 ~ 10.5로 변화시켰다. 제조된 촉매는 세척 후 $400^{\circ}C$, 3시간 소성 하였다. 제조된 1wt% Pt/$Al_2O_3$ 촉매의 특성분석을 위해 BET, TPR, CO-chemisorption을 수행하였다. PrOx 반응 실험은 GHSV=60,000 $ml/g_{cat}{\cdot}h$, $T=100{\sim}200^{\circ}C$, ${\lambda}$=4 조건에서 수행되었으며 반응 전에 촉매는 $400^{\circ}C$, 3시간 환원 후 사용하였다. 촉매의 특성분석과 PrOx 반응 실험 결과를 통해 촉매가 담체 위에 고분산 되는 최적의 pH를 확인할 수 있었으며, 기존의 함침법으로 제조된 촉매와 성능 비교를 통해 제조방법에 따른 영향을 살펴보았다.

  • PDF

EFFECTS OF Pt AND Cr ADDITION ON MAGNETIC PROPERTIES IN Co-Cr-P-Pt MAGNETIC THIN FILMS

  • Sohn, H.K.;Shin, K.H.;Lee, T.D.;Kang, T.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.618-622
    • /
    • 1995
  • We studied the effects of Pt and Cr addition in a new Co-Cr-P-Pt alloy system with the coercivity higher than 2000 Oe even when they were deposited without substrate heating and bias voltage. The coercivity of the films increased from 1000 to 2000 Oe or higher by addition of 12 at.%Pt. The variation of the anisotropy field with increasing Pt content was similar to that of the coercivity. This indicate that the increase of the coercivity might be associated with increase of the anisotropy field with Pt addition. With the addition of Cr, the coercivity of the films increased up to 8 at.%Cr and the coercive squareness of the films decreased. The angular variation of coercivity deviated at a lower angle from domain wall motion mode as the Cr content increases. From these result, it is believed that the grain isolation of the films is enhanced with the addition of Cr.

  • PDF

Decomposition of Sulfuric Acid at Pressurized Condition in a Pt-Lined Tubular Reactor (관형 Pt-라이닝 반응기를 이용한 가압 황산분해반응)

  • Gong, Gyeong-Taek;Kim, Hong-Gon
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.1
    • /
    • pp.51-59
    • /
    • 2011
  • Sulfur-Iodine (SI) cycle, which thermochemically splits water to hydrogen and oxygen through three stages of Bunsen reaction, HI decomposition, and $H_2SO_4$ decomposition, seems a promising process to produce hydrogen massively. Among them, the decomposition of $H_2SO_4$ ($H_2SO_4=H_2O+SO_2+1/2O_2$) requires high temperature heat over $800^{\circ}C$ such as the heat from concentrated solar energy or a very high temperature gas-cooled nuclear reactor. Because of harsh reaction conditions of high temperature and pressure with extremely corrosive reactants and products, there have been scarce and limited number of data reported on the pressurized $H_2SO_4$ decomposition. This work focuses whether the $H_2SO_4$ decomposition can occur at high pressure in a noble-metal reactor, which possibly resists corrosive acidic chemicals and possesses catalytic activity for the reaction. Decomposition reactions were conducted in a Pt-lined tubular reactor without any other catalytic species at conditions of $800^{\circ}C$ to $900^{\circ}C$ and 0 bar (ambient pressure) to 10 bar with 95 wt% $H_2SO_4$. The Pt-lined reactor was found to endure the corrosive pressurized condition, and its inner surface successfully carried out a catalytic role in decomposing $H_2SO_4$ to $SO_2$ and $O_2$. This preliminary result has proposed the availability of noble metal-lined reactors for the high temperature, high pressure sulfuric acid decomposition.

Preferential CO Oxidation over Ce-Promoted Pt/γ-Al2O3 Catalyst (Ce가 첨가된 Pt/γ-Al2O3 촉매의 선택적 CO 산화반응 특성)

  • Kim, Kihyeok;Koo, Keeyoung;Jung, Unho;Yoon, Wanglai
    • Journal of Hydrogen and New Energy
    • /
    • v.23 no.6
    • /
    • pp.640-646
    • /
    • 2012
  • The effect of Ce promotion over 1wt% $Pt/{\gamma}-Al_2O_3$ catalysts on the CO conversion and $CO_2$ selectivity was investigated in preferential CO oxidation (PrOx) to reduce the CO concentration less than 10 ppm in excess $H_2$ stream for polymer electrolyte membrane fuel cell (PEMFC). Ce-promoted 1wt% $Pt/{\gamma}-Al_2O_3$ catalysts were prepared by incipient wetness impregnation method and the loading amount of Pt was fixed at 1wt%. The content of Ce promoter which has excellent oxygen storage and transfer capability due to the redox property was adjusted from 0 to 1.5wt%. Ce-promoted 1wt% $Pt/{\gamma}-Al_2O_3$ catalysts exhibit high CO conversion and $CO_2$ selectivity at low temperatures below $150^{\circ}C$ due to the improvement of reducibility of surface PtOx species compared with the 1wt% $Pt/{\gamma}-Al_2O_3$ catalyst without Ce addition. When Ce content was more than 1wt%, the catalytic activity was decreased at over $160^{\circ}C$ in PrOx because of competitive $H_2$ oxidation. As a result, 0.5wt% Ce is optimal content not only to achieve high catalytic activity and good stability at low temperatures below $150^{\circ}C$ in the presence of $CO_2$ and $H_2O$ but also to minimize the $H_2$ oxidation at high temperatures.

Preparation of V3.5+ Electrolyte for Vanadium Redox Flow Batteries using Carbon Supported Pt Dendrites Catalyst (카본 담지 백금 덴드라이트 촉매를 이용한 바나듐 레독스 흐름전지용 3.5가 바나듐 전해질의 제조)

  • Lee, Hojin;Kim, Hansung
    • Journal of the Korean Electrochemical Society
    • /
    • v.24 no.4
    • /
    • pp.113-119
    • /
    • 2021
  • In this study, impurity free V3.5+ electrolytes were prepared using formic acid as a reducing agent and PtD/C as a catalyst and it was applied to VRFB. The well-oriented 3D dendrite structure of the PtD/C catalyst showed high catalytic activity in formic acid oxidation reaction and vanadium reduction reaction. As a result, the conversion ratio of electrolyte using the PtD/C was 2.73 mol g-1 h-1, which was higher than that of 1.67 mol g-1 h-1 of Pt/C prepared by the polyol method. In addition, in the VRFB charging and discharging experiment, the V3.5+ electrolyte produced by the catalytic reaction showed the same performance as the standard V3.5+ electrolyte prepared by the electrolytic method, thus proving that it can be used as an electrolyte for VRFB.

A Study on the Gas Sensing Characteristics of Pt/$SnO_2$ Gas Sensor (Pt/$SnO_2$ 가스 센서의 가스 감지 특성에 관한 연구)

  • Lee, J.H.;Kim, C.K.;Kim, J.G.;Kim, D.J.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1304-1307
    • /
    • 1997
  • A hydrogen gas sensor utilizing Pt/$SnO_2$ system was fabricated by the pressed pellet method. The crystal structure, direction of the crystal, crystal size and microstructure between the catalyst and the support ($SnO_2$) were characterized with Electron Diffraction Analysis, Transmission Electron Microscopy, Scanning Electron Microscopy. After the reactor with a Pt/$SnO_2$ sample was run with a flow rate of 30sccm (a mixture of $0.5%H_2$ in $N_2$) for a while, the resistance of $SnO_2$ was saturated, but the $SnO_2$ kept absorbing $H_2$ gas. $H_2$ gas sensing properties of Pt/$SnO_2$ were investigated at several temperatures. As a result, it was observed that Pt/$SnO_2$ has high sensitivity at $300^{\circ}C$ and $400^{\circ}C$.

  • PDF

A Study on Reaction Characteristics of H2 SCR using Pt/TiO2 Catalyst (Pt/TiO2 촉매의 H2 SCR 반응 특성에 관한 연구)

  • Kim, Sung Su;Choi, Hyun Jin;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.21 no.1
    • /
    • pp.18-23
    • /
    • 2010
  • This work investigated the catalytic reaction characteristics of $H_2$ SCR applied at low temperature ($80{\sim}150^{\circ}C$) using Pt catalyst supported on $TiO_2$. The experiments were performed in terms of $H_2O$, $O_2$ in reaction gas, calcination temperature of the Pt catalyst, $H_2$/NOx mole ratio, space velocity. $H_2O$ was an inhibitor of reaction on $H_2$ SCR using Pt catalyst, catalytic performance increased as $O_2$ concentration decreased. Nevertheless, $NH_3$ slip generated by the reaction between NOx and $H_2$ in the absence of $O_2$. While it was effective to calcine less than $600^{\circ}C$ by phase transition and the catalytic performance increased as $H_2$/NOx mole ratio increased. However, $H_2$ slip was not observed at that increase mole ratio by $H_2$ oxidation to $H_2O$.