• Title/Summary/Keyword: H-Beam

Search Result 1,982, Processing Time 0.03 seconds

DESIGN OPTIMIZATION OF RADIATION SHIELDING STRUCTURE FOR LEAD SLOWING-DOWN SPECTROMETER SYSTEM

  • KIM, JEONG DONG;AHN, SANGJOON;LEE, YONG DEOK;PARK, CHANG JE
    • Nuclear Engineering and Technology
    • /
    • v.47 no.3
    • /
    • pp.380-387
    • /
    • 2015
  • A lead slowing-down spectrometer (LSDS) system is a promising nondestructive assay technique that enables a quantitative measurement of the isotopic contents of major fissile isotopes in spent nuclear fuel and its pyroprocessing counterparts, such as $^{235}U$, $^{239}Pu$, $^{241}Pu$, and, potentially, minor actinides. The LSDS system currently under development at the Korea Atomic Energy Research Institute (Daejeon, Korea) is planned to utilize a high-flux ($>10^{12}n/cm^2{\cdot}s$) neutron source comprised of a high-energy (30 MeV)/high-current (~2 A) electron beam and a heavy metal target, which results in a very intense and complex radiation field for the facility, thus demanding structural shielding to guarantee the safety. Optimization of the structural shielding design was conducted using MCNPX for neutron dose rate evaluation of several representative hypothetical designs. In order to satisfy the construction cost and neutron attenuation capability of the facility, while simultaneously achieving the aimed dose rate limit (< $0.06{\mu}Sv/h$), a few shielding materials [high-density polyethylene (HDPE)eBorax, $B_4C$, and $Li_2CO_3$] were considered for the main neutron absorber layer, which is encapsulated within the double-sided concrete wall. The MCNP simulation indicated that HDPE-Borax is the most efficient among the aforementioned candidate materials, and the combined thickness of the shielding layers should exceed 100 cm to satisfy the dose limit on the outside surface of the shielding wall of the facility when limiting the thickness of the HDPE-Borax intermediate layer to below 5 cm. However, the shielding wall must include the instrumentation and installation holes for the LSDS system. The radiation leakage through the holes was substantially mitigated by adopting a zigzag-shape with concrete covers on both sides. The suggested optimized design of the shielding structure satisfies the dose rate limit and can be used for the construction of a facility in the near future.

A Study on Growth and Characterization of Magnetic Semiconductor GaMnAs Using LT-MBE (저온 분자선 에피택시법을 이용한 GaMnAs 자성반도체 성장 및 특성 연구)

  • Park Jin-Bum;Koh Dongwan;Park Young Ju;Oh Hyoung-taek;Shinn Chun-Kyo;Kim Young-Mi;Park Il-Woo;Byun Dong-Jin;Lee Jung-Il
    • Korean Journal of Materials Research
    • /
    • v.14 no.4
    • /
    • pp.235-238
    • /
    • 2004
  • The LT-MBE (low temperature molecular beam epitaxy) allows to dope GaAs with Mn over its solubility limit. A 75 urn thick GaMnAs layers are grown on a low temperature grown LT-GaAs buffer layer at a substrate temperature of $260^{\circ}C$ by varying Mn contents ranged from 0.03 to 0.05. The typical growth rate for GaMnAs layer is fixed at 0.97 $\mu\textrm{m}$/h and the V/III ratio is varied from 25 to 34. The electrical and magnetic properties are investigated by Hall effect and superconducting quantum interference device(SQUID) measurements, respectively. Double crystal X-ray diffraction(DCXRD) is also performed to investigate the crystallinity of GaMnAs layers. The $T_{c}$ of the $Ga_{l-x}$ /$Mn_{x}$ As films grown by LT-MBE are enhanced from 38 K to 65 K as x increases from 0.03 into 0.05 whereas the $T_{c}$ becomes lower to 45 K when the V/III ratio increases up to 34 at the same composition of x=0.05. This means that the ferromagnetic exchange coupling between Mn-ion and a hole is affected by the growth condition of the enhanced V/III ratio in which the excess-As and As-antisite defects may be easily incorporated into GaMnAs layer.

The Kwinana Shoreline Fumigation Experiment in Western Australia, Australia

  • Yoon, I.H.;Sawford, B.L;Manins, P.C.
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 1996.04a
    • /
    • pp.22-22
    • /
    • 1996
  • ;The Kwinana Shoreline Fumigation Experiment(KSFE) took place in Fremantle, WA, Australia between 23 January and 8 February, 1995. All measurement systems performed to expectation. The CSIRO DAR(Division of Atmospheric Research) LIDAR measured plume sections from near the Kwinana Power Station(KPS) stacks to up to about 5 km downstream. It also measured boundary layer aerosols and the structure of the boundary layer on some occasions. Both stages A and C of KPS were used as tracers at different times. Radiosonde and double theodolite sounding systems measured temperature, humidity, air pressure and wind structure at the coast(Woodman Point) and at the inland(ALCOA residue dump) site at intervals of roughly two hours. These were supplemented by mid afternoon soundings(radiosonde and single theodolite) by Department of Environmental Protection(DEP) at Swanbourne. The Flinders aircraft measured wind, turbulence and temperature structure of the atmospheric boundary layer, concentrations of $C0_2,\;0_3,\;S0_2\;and\;NO_x$ in the smoke plumes and surface radiation over both land and sea. CSIRO DCET(Division of Coal and Energy Technology) vehicle successfully interceptde many smoke plumes and using a range of tracers will be able to identify the various sources much of the time. Routine data from the DEP and Kwinana Industrial Council(KIC) air quality monitoring networks were also automatically logged. Murdoch University measured surface heat flux at Hope Valldy monitoring station and also at Wattleup monitoring station for the last five days. The heart of the LIDAR system is a Neodymium-doped Yttrium-aluminumgarnet(Nd:Y AG) laser operating at a fundamental wavelength of 1064 nm, with harmonics fo 532 nm and 355 nm. A small fraction of the laser beam is scattered back to the LIDAR, collected by a telescope and detedted by a photomultiplier tube. The intensity of the signal as a function of time is a measure of the particle concentration as a function of distance along the line of the laser shot. The results of nine days special field observations are summarized in detail.etail.

  • PDF

Summer Marine Algal Floras and Community Structures in Taean Peninsula, Korea (태안반도 하계 해조상 및 군집구조)

  • Yoo, Hyun-Il;Lee, Ji-Hee;Lee, Ki-Hun;Baek, Sang-Hum;Heo, Young-Beam;Noh, Hyoung-Soo;Choi, Han-Gil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.40 no.4
    • /
    • pp.210-219
    • /
    • 2007
  • The benthic marine algal flora and community structure were examined at five sites of the Taean Peninsula, Korea, during July-August 2005. Ninety-six algal species were Identified, including 14 green, 21 brown, and 60 red algae, and 1 marine plant. The common species that occurred at the five sites were Sargassum thunbergii, Gelidium divaricatum, Caulacanthus okamurae, Gracilavia vermiculophylla, and Neorhodomela aculeata. Sthunbergii was the dominant species in terms of coverage and biomass at ail of the study sites. The average biomass varied from $23.72g/m^2$ in dry weight at Chaeseokpo to $66.43g/m^2$ at Padori. The species could be divided into six functional groups in terms of morphological characteristics: 41 coarsely branched forms, 25 filamentous forms, 16 sheet forms, 7 thick leathery forms, including the marine plant Phyllospadix iwatensis, 4 crustose forms, and 3 Jointed calcareous forms. The seaweed communities at the five study sites were unstable and the environmental conditions were bad or very bad. Among the five study sites, the ecological evaluation index (EEI) and diversity index (H') were maximal at Padori at 2.29 and 1.98, respectively. By contrast, the dominance index (DI) was minimal at Padori (0.55) and maximal at Baramarae (0.96). Therefore, we conclude that the rocky shore at Padori has the best environment among the five study sites, although the species richness and biomass of seaweeds have declined continuously over the last 10 years.

A Study on the Preventive Measures against Local Vibrations of Ships' Deck Panels (선체갑판(船體甲板)의 국부진동(局部振動)에 대한 방진설계(防振設計)에 관한 연구(硏究))

  • K.C.,Kim;H.M.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.18 no.1
    • /
    • pp.1-8
    • /
    • 1981
  • To contribute to the preventive measures against local vibrations of ship's deck panels, some investigations into the prediction method of the natural frequency of the vibration of stiffened plates were done. Firstly, an analytical method based on the orthotropic plate analogy and the Rayleigh method using eigenfunctions of the Euler beam was shown, and numerical results of a regularly stiffened plate were compared with experimental results. And then, the method was extended to stiffened plates having one or two irregular stiffeners to obtain an approximate formula showing the relation between the change of the natural frequency and the size of the irregular stiffeners. The latter case was investigated for the purpose of providing a convenient design manual applicable to cure of local resonant vibrations of ships' deck panels by additional reinforcement of one or two stiffeners. In the analytical development the boundary was assumed to be rigidly supported and elastically restrained against rotation. In the experiment, however, only an extreme case i.e. simply supported boundary was investigated. The results of the investigation show that there is a fairly good conformity between the analytical results and the experimental ones in the first case, and that the approximate formula for the second case is confirmed also to be reliable for the design purpose. Considering that actual boundary conditions of deck panels in ship structures lie mostly somewhere between the simple support and the fixed, the authors discussed problems of the joint efficiency at the boundary of deck panels from the viewpoint of the practical application of the formulae.

  • PDF

New bone formation using fibrin rich block with concentrated growth factors in maxillary sinus augmentation (성장 인자가 농축된 Fibrin rich block을 이용한 상악동 거상술에서의 신생골 형성에 관한 연구)

  • Kim, Ji-Min;Lee, Ju-Hyoung;Park, In-Sook
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.37 no.4
    • /
    • pp.278-286
    • /
    • 2011
  • Introduction: This study examined the predictability of new bone formation in the pneumatized maxillary sinus using only fibrin-rich blocks with concentrated growth factors as an alternative to bone grafts. Materials and Methods: Maxillary sinus augmentation was performed in thirty-three patients with a deficient alveolar bone height (mean 3.9 mm). All patients were treated consecutively with sinus membrane elevation via the lateral window approach and panoramic radiograms and cone-beam computed tomograms were taken to evaluate the remaining bone height and the new bone formation in the maxillary sinus, before and after surgery. Four biopsy specimens were taken at the time of implant consolidation (after an average of five months healing) and were stained by H & E and Trichrome staining. Results: None of the patients had postoperative complications during implant consolidation. After an average of 5 months since sinus augmentation, newly formed bone was observed in all cases by a radiographic evaluation. In 4 biopsy samples, newly formed bone was observed along the floor of the replaced bony window. The osteoblast lining and well distinguished Osteocytes in the lacunas were observed in the newly formed bone. Of the 74 implants (4 different surfaced implants - resorbable blast media-surfaced (RBM), Hydroxyapatite (HA) coated, acid-etched, sintered porous-surfaced implant) placed, one RBM implant failed. The success rate was 98.6% after a mean of 15 months. Discussion: These results suggest that maxillary sinus augmentation using fibrin rich block with concentrated growth factors is a successful and predictable technique.

Photodissolution, photodiffusion characteristics and holographic grating formation on Ag-doped $As_{40}Ge_{10}Se_{15}S_{35}$ chalcogenide thin film (Ag가 도핑된 칼코게나이드 $As_{40}Ge_{10}Se_{15}S_{35}$ 박막의 광분해, 광확산특성 및 홀로그래픽 격자형성)

  • Chung, Hong-Bay
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.10
    • /
    • pp.461-466
    • /
    • 2006
  • In the present work, we investigated the photodissolution and photodiffusion effect on the interface of Ag/chalcogenide $As_{40}Ge_{10}Se_{15}S_{35}$ thin film by measuring the absorption coefficient, the optical density, the resistance change of Ag layer. It was found that the photodissolutioniphotodiffution ratio depends on the magnitude of photon energy absorbed in the chalcogenide thin film and the depth of photodiffution was proportional to the square root of the exposed time. Also, we have investigated the holographic grating formation with P-polarization states on chalcogenide $As_{40}Ge_{10}Se_{15}S_{35}$ thin film and $As_{40}Ge_{10}Se_{15}S_{35}/Ag$ double layer structure thin film. Holographic gratings have been formed using He-Ne laser (632.8 nm) which have a smaller energy than the optical energy gap, $E_g\;_{opt}$ of the film, i. e., an exposure of sub-bandgap light $(h{\upsilon} under P-polarization. As the results, we found that the diffraction efficiency on $As_{40}Ge_{10}Se_{15}S_{35}/Ag$ double layer structure thin film was more higher than that on single $As_{40}Ge_{10}Se_{15}S_{35}$ thin film. Also, we obtained that the maximum diffraction efficiency was 0.27 %, 1,000 sec on $As_{40}Ge_{10}Se_{15}S_{35}\;(1{\mu}m)/Ag$ (10 nm) double layer structure thin film by (P: P) polarized recording beam. It will offer lots of information for the photodoping mechanism and the analyses of chalcogenide thin films.

Structural Performance of Double Rip Decks Reinforced with Inverted Triangular Truss Girders (역삼각 트러스 거더로 보강된 더블 골 데크 성능 평가)

  • Son, Hong-Jun;Kim, Young-Ho;Chung, Kyung-Soo;Kim, Dae-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.6
    • /
    • pp.559-566
    • /
    • 2017
  • This paper proposes a new composite deckplate system reinforced with inverted triangular truss girders(called 'D Deck'), which does not require the use of temporary supports at construction stage. The proposed system retains increased stiffness and strength while keeping the absolute floor height change to a minimum level and can be utilized as floor systems of various types beam members such as the conventional wide-flange and U-shaped composite beams. In order to evaluate the performance of the proposed system, five specimens with a span of 5.5 m were fabricated and tested under field loading conditions consisting of several intermediate steps. The load-deflection curves of each specimen were plotted and compared with the nonlinear three-dimensional finite element analysis results. The comparison showed that the effective load sharing between the truss girders and floor deck occurs and the maximum deflection under construction stage loading is well below the limit estimated by the provisions in Korea Building Code.

Fracture Behavior of Concrete and Equivalent Crack Length Theory (콘크리트의 파괴거동규명과 등가균열(等價龜裂)길이 이론확립(理論確立)에 관한 연구)

  • Oh, Byung Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.2
    • /
    • pp.59-68
    • /
    • 1987
  • Several series of fracture tests were conducted to explore the fracture characteristics and to determine the fracture energy of concrete. A stable three-point bend test was employed to generate the load-deflection curves. The fracture energy may then be calculated from the area under the complete load-deflection curve. The initial notch-to-beam depth ratio (${\alpha}_0$/H) was varied from zero to 0.6. The prediction formula for the fracture energy of concrete is also derived and is found to depend on the tensile strength and aggregate size. The proposed fracture energy formula can be used for the fracture analysis of concrete structures. The present study also devises an equivalent crack length concept to predict the maximum failure loads of concrete beams. A simple formula for the equivalent crack length is proposed.

  • PDF

Predicting shear capacity of NSC and HSC slender beams without stirrups using artificial intelligence

  • El-Chabib, H.;Nehdi, M.;Said, A.
    • Computers and Concrete
    • /
    • v.2 no.1
    • /
    • pp.79-96
    • /
    • 2005
  • The use of high-strength concrete (HSC) has significantly increased over the last decade, especially in offshore structures, long-span bridges, and tall buildings. The behavior of such concrete is noticeably different from that of normal-strength concrete (NSC) due to its different microstructure and mode of failure. In particular, the shear capacity of structural members made of HSC is a concern and must be carefully evaluated. The shear fracture surface in HSC members is usually trans-granular (propagates across coarse aggregates) and is therefore smoother than that in NSC members, which reduces the effect of shear transfer mechanisms through aggregate interlock across cracks, thus reducing the ultimate shear strength. Current code provisions for shear design are mainly based on experimental results obtained on NSC members having compressive strength of up to 50MPa. The validity of such methods to calculate the shear strength of HSC members is still questionable. In this study, a new approach based on artificial neural networks (ANNs) was used to predict the shear capacity of NSC and HSC beams without shear reinforcement. Shear capacities predicted by the ANN model were compared to those of five other methods commonly used in shear investigations: the ACI method, the CSA simplified method, Response 2000, Eurocode-2, and Zsutty's method. A sensitivity analysis was conducted to evaluate the ability of ANNs to capture the effect of main shear design parameters (concrete compressive strength, amount of longitudinal reinforcement, beam size, and shear span to depth ratio) on the shear capacity of reinforced NSC and HSC beams. It was found that the ANN model outperformed all other considered methods, providing more accurate results of shear capacity, and better capturing the effect of basic shear design parameters. Therefore, it offers an efficient alternative to evaluate the shear capacity of NSC and HSC members without stirrups.