• 제목/요약/키워드: H$_{\infty}$ Mixed Sensitivity Method

검색결과 17건 처리시간 0.023초

하중 혼합감도함수를 이용한 RTP 시스템의 $H^{\infty}$ 제어기 설계 ($H^{\infty}$ Controller Design for RTP System using Weighted Mixed Sensitivity Minimization)

  • 이상경;김종해;오도창;박홍배
    • 전자공학회논문지S
    • /
    • 제35S권6호
    • /
    • pp.55-65
    • /
    • 1998
  • 산업현장에서는 반도체 공정의 산화막(oxidation)과 소둔(annealing) 공정에서 생산성을 향상시키기 위해 기존의 확산로(furnace)보다 RTP(rapid thermal processing) 시스템을 많이 사용하고 있다. 이러한 RTP 시스템의 주요 제어대상은 정확한 웨이퍼(wafer)의 온도조절과 웨이퍼 내의 균일성이다. 본 논문에서는 RTP 시스템의 온도변화와 같은 외란에 대한 견실안정성 문제를 해결하기 위해 하중 혼합감도함수를 이용하여 $H^{\infty}$ 제어기를 설계하고, 온도추적 및 웨이퍼 내의 균일성 등의 견실성능 개선은 루프쉐이핑 방법을 이용한다. 온도에 따른 선형화된 모델은 차수문제로 인하여 실 시스템 구현시 제약조건이 있으므로 한켈(Hankel), 자승근 균형(square-root balanced) 및 슈어 균형(Schur balanced) 방법을 사용하여 모델 차수축소를 하여 제어기를 설계한다. 원래의 모델과 축소된 모델에 대해 성능을 비교하고 시뮬레이션을 통하여 설계한 제어기의 견실안정성과 성능을 확인한다.

  • PDF

2자유도 보상법에 의한 직류서보전동기의 강인한 속도제어시스템 구현 (Implementation of the robust speed control system for DC servo motor using TDF compensator method)

  • 김동완
    • 전기학회논문지P
    • /
    • 제52권2호
    • /
    • pp.74-80
    • /
    • 2003
  • In this paper, a robust two-degree-of-freedom(TDF) the speed control system using $H_{\infty}$ optimization method and real genetic algorithm is proposed for the robust stability and the robust performance in dc servo motor system. This control system composed of feedback and feedforward controller. The feedback(FB) controller with $H_{\infty}$ optimization method is designed for real genetic algorithm that is model matching problem using mixed sensitivity function. The feedforward(FF) controller with $H_{\infty}$optimization method is minimized the error between transfer function of the optimal model and the overall transfer function. The proposed robust two-degree-of-freedom speed control system is simulated to the dc servo motor. By the simulation, feedback controller can obtain the robust stability property and feedforward controller can obtain the robust performance property under modelling error. The performance of the dc servo motor is analyzed by the experiment setting. The validity of the proposed method is verified through being compared with pid(proportional integrated differential)control system design method for the dc servo motor.

강인한 궤환 능동 소음 제어기의 설계에 관한 연구 (A Study on the Design of the Robust Feedback Active Noise Controller)

  • 안우현;정태진;유치형;정찬수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 B
    • /
    • pp.1018-1020
    • /
    • 1996
  • In this paper, when a robust active noise controller for a small cavity to control the noise induced in the cavity is designed, the Graphical method based on the robust stability and performance requirements is studied. The problem of designing controller that achieve these robust performance conditions is related to minimizing the $H_{\infty}$ norm of the mixed sensitivity function by using $H_{\infty}$ control theory. Also, For design the controller, the loopshaping method which control the weight functions to satisfy the design specification without loss of a robust performance can be used. Therefore, we determined the acceptable design specification with the system characteristics of the small cavity and obtained its robust controller with the robust performance specifications by stability margin.

  • PDF

A Robust Levitation Controller Design for Electromagnetic Levitation System

  • Kim, Choon-Kyung;Kim, Jong-Moon;Park, Min-Kook;Kwon, Soon-Man
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.37.6-37
    • /
    • 2001
  • In this paper, a robust levitation controller for an attractive MAGLVE system is designed. The design of an H$\infty$ controller based on LMI method is proposed for the control of a simple magnetic levitation system. Attractive MAGLEV system is highly nonlinear and open-loop unstable, and has a very restricted equilibrium region, Also, this system has to tolerate various disturbances caused by propulsion. Thus a robust feedback controller is needed to control the system efficiently. We first formulate a mathematical model for the single magnet levitation system. Then we set up an H$\infty$ control problem as a mixed sensitivity problem where the augmented plant is constructed with frequency weighting function ...

  • PDF

Effect of Active Suspension Unit with $H{\infty}$ Robust Controller on the Vehicle Dynamics Performances

  • Kanbolat, Ahmet;Okuyama, Yoshifumi;Takemori, Fumiaki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1995년도 Proceedings of the Korea Automation Control Conference, 10th (KACC); Seoul, Korea; 23-25 Oct. 1995
    • /
    • pp.356-359
    • /
    • 1995
  • This paper uses a new method to improve the performance criterion of an active suspension car. The used control strategy is based on robust H$_{\infty}$ control theory taking into consideration the chasis flexibility. It will be shown that the modeling errors can be lumped into an unstructured uncertainty and the robust controller designed in the presence of these perturbations could maintain the stability and performance even for the controlled true system..

  • PDF

Robust power control design for a small pressurized water reactor using an H infinity mixed sensitivity method

  • Yan, Xu;Wang, Pengfei;Qing, Junyan;Wu, Shifa;Zhao, Fuyu
    • Nuclear Engineering and Technology
    • /
    • 제52권7호
    • /
    • pp.1443-1451
    • /
    • 2020
  • The objective of this study is to design a robust power control system for a small pressurized water reactor (PWR) to achieve stable power operations under conditions of external disturbances and internal model uncertainties. For this purpose, the multiple-input multiple-output transfer function models of the reactor core at five power levels are derived from point reactor kinetics equations and the Mann's thermodynamic model. Using the transfer function models, five local reactor power controllers are designed using an H infinity (H) mixed sensitivity method to minimize the core power disturbance under various uncertainties at the five power levels, respectively. Then a multimodel approach with triangular membership functions is employed to integrate the five local controllers into a multimodel robust control system that is applicable for the entire power range. The performance of the robust power system is assessed against 10% of full power (FP) step load increase transients with coolant inlet temperature disturbances at different power levels and large-scope, rapid ramp load change transient. The simulation results show that the robust control system could maintain satisfactory control performance and good robustness of the reactor under external disturbances and internal model uncertainties, demonstrating the effective of the robust power control design.

내부루프 보상기를 가지는 강인 동작 제어기의 설계 (Design of Robust Motion Controllers with Internal-Loop Compensator)

  • 김봉근;정완균
    • 대한기계학회논문집A
    • /
    • 제25권10호
    • /
    • pp.1501-1513
    • /
    • 2001
  • Disturbance observer, adaptive robust control, and enhanced internal model control are model based disturbance attenuation methods famous for robust motion controller which can satisfy desired performance and robustness of high-speed/high-accuracy positioning systems. In this paper, these are shown to be the same scheme with different parameterizations. To do this, a generalized framework, called as RIC(robust internal-loop compensator) is proposed and the conventional schemes are analyzed in the RIC framework. Through this analysis, it can be shown that there are inherent similarities between the schemes and advantages of the RIC in the viewpoint of controller design. This is verified through simulations and experiments.