• 제목/요약/키워드: H$_\infty$controller

검색결과 572건 처리시간 0.037초

AN LMI APPROACH TO AUTOMATIC LOOP-SHAPING OF QFT CONTROLLERS

  • Bokharaie, Vaheed S.;Khaki-Sedigh, Ali
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.433-437
    • /
    • 2003
  • Quantitative Feedback Theory (QFT) is one of effective methods of robust controller design. In QFT design we can considers the phase information of the perturbed plant so it is less conservative than $H_{\infty}$ and ${\mu}$-synthesis methods and as be shown, it is more transparent than the sensitivity reduction methods mentioned . In this paper we want to overcome the major drawback of QFT method which is lack of an automatic method for loop-shaping step of the method so we focus on the following problem: Given a nominal plant and QFT bounds, synthesize a controller that achieves closed-loop stability and satisfies the QFT boundaries. The usual approach to this problem involves loop-shaping in the frequency domain by manipulating the poles and zeros of the nominal loop transfer function. This process now aided by recently developed computer aided design tools proceeds by trial and error and its success often depends heavily on the experience of the loop-shaper. Thus for the novice and First time QFT user, there is a genuine need for an automatic loop-shaping tool to generate a first-cut solution. Clearly such an automatic process must involve some sort of optimization, and while recent results on convex optimization have found fruitful applications in other areas of control theory we have tried to use LMI theory for automating the loop-shaping step of QFT design.

  • PDF

불확실성을 고려한 횡축형 자기 베어링 시스템의 로버스트 제어에 관한 연구 (A Study on the Robust Control of Horizontal-Shaft Magnetic Bearing System Considering Perturbation)

  • 김창화;정병건;양주호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제34권1호
    • /
    • pp.92-101
    • /
    • 2010
  • 본 연구에서는 회전체를 지지하는 자기 베어링에 관하여, 2장에서는 적분형 서보계를 이용하여 횡축형 자기베어링 시스템(Horizontal-shaft Magnetic Bearing System: HMBS)에 대한 불확실성을 고려하면서 과도상태 응답개선에 대한 이론적인 고찰과 제어기설계 수식을 유도한다. 그리고 HMBS에 대해 물리 퍼래미터 변동에 대한 강인성과 외란의 영향을 저감하고 기준위치 변경에 따른 추종성을 갖도록 상태 피드백 제어기를 LMI 기법을 이용하여 설계한다. 3장에서는 설계한 제어칙을 가지고 시스템 불확실성의 변동에 대해 시간영역의 설계사양을 고려한 경우와 고려하지 않은 경우에 대하여 시뮬레이션을 행하고 실제 적용 가능성을 검토한다.

Design, Implementation and Navigation Test of Manta-type Unmanned Underwater Vehicle

  • Kim, Joon-Young;Ko, Sung-Hyub;Cho, So-Hyung;Lee, Seung-Keon;Sohn, Kyoung-Ho
    • International Journal of Ocean System Engineering
    • /
    • 제1권4호
    • /
    • pp.192-197
    • /
    • 2011
  • This paper describes the mathematical modeling, control algorithm, system design, hardware implementation and experimental test of a Manta-type Unmanned Underwater Vehicle (MUUV). The vehicle has one thruster for longitudinal propulsion, one rudder for heading angle control and two elevators for depth control. It is equipped with a pressure sensor for measuring water depth and Doppler Velocity Log for measuring position and angle. The vehicle is controlled by an on-board PC, which runs with the Windows XP operating system. The dynamic model of 6DOF is derived including the hydrodynamic forces and moments acting on the vehicle, while the hydrodynamic coefficients related to the forces and moments are obtained from experiments or estimated numerically. We also utilized the values obtained from PMM (Planar Motion Mechanism) tests found in the previous publications for numerical simulations. Various controllers such as PID, Sliding mode, Fuzzy and $H{\infty}$ are designed for depth and heading angle control in order to compare the performance of each controller based on simulation. In addition, experimental tests are carried out in a towing tank for depth keeping and heading angle tracking.

선박 주행속도 변화를 고려한 Rudder-Roll Stabilization System 설계에 관한 연구 (A Study on Rudder-Roll Stabilization System Design for Ship with Varying Ship Speed)

  • 김영복;채규훈
    • 제어로봇시스템학회논문지
    • /
    • 제8권5호
    • /
    • pp.363-372
    • /
    • 2002
  • In ship operation, the roll motions can seriously degrade the performance of mechanical and personnel effectiveness. So many studies for the roll stabilization system design have been performed and good results have been achieved. In many studies, the stabilizing fins are used. Recently rudders, which have been extensively modified, have been used exclusively to stabilize the roll. But, in the roll stabilization control system, the control performance is very sensitive to the ship speed. So, we can see that it is important to consider the ship speed in the rudder roll control system design. The gain-scheduling control technique is very useful in the control problem incorporating time varying parameters which can be measured in real time. Based on this fact, in this paper we examine the;$H_{\infty}$-Gain Scheduling control design technique. Therefore, we assume that a parameter, the ship speed which can be estimated in real time, is varying and apply the gain-scheduling control technique to design the course keeping and anti-rolling control system far a ship. In this control system, the controller dynamics is adjusted in real-time according to time-varying plant parameters. The simulation result shows that the proposed control strategy is shown to be useful for cases when the ship speed is varying and robust to disturbances like wind and wave.

횡방향 거동 특성을 고려한 부하모사 시스템 해석 (Analysis of Load Simulating System Considering Lateral Behavior of a Vehicle)

  • 김효준
    • 한국산학기술학회논문지
    • /
    • 제20권5호
    • /
    • pp.621-626
    • /
    • 2019
  • 자동차의 과도한 차체 운동과 조종 불안정성을 유발하는 대표적인 외란 입력으로는 운전자에 의해 가해지는 조향 핸들 조작이다. 급격하고 과도한 핸들 조작은 SUV 차량처럼 기하학적 및 동역학적 특성에 따라 차량 전복 현상도 발생시킬 수 있다. 본 연구에서는 이에 대응할 수 있는 제어 시스템의 구조화에 대하여 다음과 같이 기초 연구를 수행하였다. 운전자 조종으로 유발되는 횡방향 거동에 대한 수학적 모델링을 수행하고, 이를 토대로 차체 운동을 제어할 수 있는 제어기를 설계하였다. 파라미터 불확실성으로 인한 모델링 오차에 대해 강건한 제어 성능을 확보하기 위하여 $H_{\infty}$ 알고리즘을 적용하였다. 비 연성화된 1/4 차량을 기반으로, 차체에 작용하는 모우멘트에 상응하는 동적 부하를 모사할 수 있는 모델을 제시하였다. 동적 시뮬레이션을 수행하여 부하 모사 모델의 타당성을 파악하였다. 차체- 차축- 서스펜션- 타이어로 조합되는 1/4 실험 차량 장치와 부하 모사 모듈, 서스펜션 제어 모듈 및 Hils 기술을 적용하는 차체 거동 제어 시스템에 대한 프레임워크를 제안하였다.

선박용 디젤기관의 지능적인 속도제어시스템 (An intelligent Speed Control System for Marine Diesel Engine)

  • 오세준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권3호
    • /
    • pp.320-327
    • /
    • 1998
  • The purpose of this study is to design the intelligent speed control system for marine diesel engine by combining the Model Matching Method and the Nominal Model Tracking Method. Recently for the speed control of a diesel engine some methods using the advanced control techniques such as LQ control Fuzzy control or H$\infty$ control etc. have been reported. However most of speed controllers of a marine diesel engine developed are still using the PID control algorithm But the performance of a marine diesel engine depends highly on the parameter setting of the PID controllers. The authors proposed already a new method to tune efficiently the PID parameters by the Model Mathcing Method typically taking a marine diesel engine as a non-oscillatory second-order system. It was confirmed that the previously proposed method is superior to Ziegler & Nichols's method through simulations under the assumption that the parameters of a diesel engine are exactly known. But actually it is very difficult to find out the exact model of the diesel engine. Therefore when the model and the actual diesel engine are unmatched as an alternative to enhance the speed control characteristics this paper proposes a Model Refernce Adaptive Speed Control system of a diesel engine in which PID control system for the model of a diesel engine is adopted as the nominal model and a Fuzzy controller is adopted as the adaptive controller, And in the nominal model parameters of a diesel engine are adjusted using the Model Matching Method. it is confirmed that the proposed method gives better performance than the case of using only Model Matching Method through the analysis of the characteristics of indicial responses.

  • PDF

쌍롤형 박판주조기의 모델링과 적응최적제어 (Modeling and adaptive optimal control of a twin roll strip caster)

  • 김성훈;홍금식;이교일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.325-328
    • /
    • 1997
  • In this paper the modeling and control of a twin roll strip caster is investigated. Mathematical models for the strip casting process are obtained by analyzing five critical areas such that the molten steel level in the pool, solidification process, roll separating force and torque, roll dynamics including hydraulic actuators, and roll drive system. A two-level control strategy is proposed. At lower level, three local subsystems are independently feedback-controlled by suitable local controllers which perform well to the behaviors of each subsystem. They are a variable structure control of the molten steel level in the pool, an adaptive predictive control of the roll gap which is directly related to the strip thickness, and an $H^{\infty}$ control of the roll drive system. At higher level, all reference signals to the lower level subsystems are generated by an optimal controller in the perspective of regulating the strip thickness and roll separating force. Simulations are provided..

  • PDF

LMI를 이용한 선박 횡동요 제어에 관한 실험적 연구 (An Experimental Study on the Rolling Motion Control of a Ship Based on LMI Approach)

  • 채규훈;김영복
    • 한국해양공학회지
    • /
    • 제17권2호
    • /
    • pp.60-66
    • /
    • 2003
  • In this paper, an actively controlled anti-rolling system is considered, in order to reduce the rolling motion of a ship. In this control system, a small auxiliary mass is installed on the upper area of the ship, and an actuator is connected between the auxiliary mass and the ship. The actuator reacts the auxiliary mass, applying inertial control forces to the ship to reduce the rolling motion in the desired manner. In this paper, we introduce LMI based H$_{\infty}$ control approach to design the anti-rolling control system for the controlled ship. And the experimental results show that the desirable control performance can be achieved.

T-S 퍼지 모델 기반 수중글라이더를 위한 추종 제어기 (Tracking Controller for Underwater Gliders Based on T-S Fuzzy Models)

  • 이경학;김도완
    • 전기학회논문지
    • /
    • 제67권2호
    • /
    • pp.261-269
    • /
    • 2018
  • In this paper, we propose a Takagi-Sugeno (T-S) fuzzy-model-based design for the tracking control of a class of nonlinear underwater glider. By using the partial linearization and the sector nonlinearity, the underwater glider with six degrees of freedom (6 DOF) is modelled by the T-S fuzzy model. The concerned tracking control problem with $H_{\infty}$ performance is converted into the stabilization one for the error dynamics between the given nonlinear underwater glider and the reference time-varying input. Sufficient conditions are derived for the asymptotic stabilizability of the error dynamics in the format of matrix inequality. Simulation results demonstrate the effectiveness of the proposed design methodology.

N4SID 알고리즘을 이용한 연속 냉간 압연기의 선형모델 규명 (Identification of Linear Model of Tandem Cold Mill Using N4SID Algorithm)

  • 엄상오;황이철;김윤식;김종윤;박영산
    • 한국정보통신학회논문지
    • /
    • 제3권4호
    • /
    • pp.895-905
    • /
    • 1999
  • This paper identifies a linear time-invariant mathematical model of each stand of a five-stand tandem cold mill to design a robust $H_\infty$ thickness controller by applying input and output data sets to N4SID (Numerical algorithms for Subspace State Space System Identification) method. The input-output data sets describe interstand interference in the process of tandem cold rolling and are obtained from a nonlinear simulator of the tandem cold mill. In result, it is shown that the identified model well approximates the nonlinear model than a Taylor linearized model. Furthermore, uncertainties including roll eccentricity and incoming strip variation are quantitatively analyzed from the plot of maximum singular values.

  • PDF