• 제목/요약/키워드: Gyroscope System

검색결과 212건 처리시간 0.026초

무인지상차량을 위한 GPS와 DR을 이용한 항법시스템 (GPS and DR Navigation System for Unmanned 9round Vehicle)

  • 박대선;박정훈;지규인
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.75-75
    • /
    • 2000
  • Recently, number of navigation system using GPS and other complementary sensors has been developed to offer high-position accuracy. In this paper, an integration of GPS and Dead-Reckoning, which consists of a fiber optical gyroscope and two high-precision wheel-motor encoders for a unmanned navigation system, is presented. The main objective of this integrated GPS/DR unmanned navigation system is to provide accurate position and heading navigation data continuously for autonomous mobile robot. We propose a method for increasing the accuracy of the estimated position of the mobile robot by its DR sensors, high-precision wheel-motor encoders and a fiber optical gyroscope. We used Kalman filter theory to combine GPS and DR measurements. The performance of GPS/DR navigation system is evaluated.

  • PDF

영상 안정화 시스템 특정 주파수 회피 (Avoidance the specified frequency of stabilization system with Gyro)

  • 이용덕;정현우;여보연;김만달;강호균
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.337-340
    • /
    • 2004
  • Stabilizing systems with Gyroscope are extensively used in various tracking devices for attaining the system's objective. Because of putting performance first in importance of system and focusing on specification of parts, designers are sometimes passing over the dynamic characteristics of system in vibrating condition. In this paper, we were dealing with unstable stabilizing control due to coincidence of stabilization platform natural frequency and that of Gyroscope used for sensing rate. For solving this problem, statics and dynamic test of silicon rubber with 3 different hardness were performed and similar stabilizing system was adopted to prove reasonability of rubber choice and static pre-strain.

  • PDF

마이크로 자이로스코프를 위한 PD 제어기 설계 및 성능시험 (PD controller design for Micro Gyroscope and Its Performance Test)

  • 성운탁;송진우;이장규;강태삼
    • 한국항공우주학회지
    • /
    • 제33권3호
    • /
    • pp.47-56
    • /
    • 2005
  • 본 논문에서는 마이크로 자이로스코프를 위한 폐루프 제어기를 설계하여 그 성능이 개선됨을 보였다. 마이크로 자이로스코프는 높은 Q값을 가지는 시스템으로 그 특성상 공진 영역에서 동작하게 되는데, 개루프로 동작할 경우 선형성, 대역폭 등의 성능에 제약이 있게 된다. 폐루프 제어기는 개루프 동작시의 이러한 제약을 극복하고 성능을 개선할 수 있도록 한다. 본 연구에서는 PD 제어기를 적용하였으며 실험 대상이 된 마이크로 자이로스코프는 서울대에서 설계하고 Bosch foundry에서 제작한 SNU-Bosch MEMS 자이로스코프를 사용하였다. 실험을 통해 폐루프 제어기의 성능을 검증한 결과 대역폭은 35Hz에서 78Hz로, 선형성은 2.07%에서 0.504%로, 바이어스 안정도는 0.066deg/sec에서 0.043deg/sec로 개선되는 것을 확인할 수 있었다.

하지 진단 및 재활을 위한 각속도계 기반 측정시스템 (Gait Estimation System for Leg Diagnosis and Rehabilitation using Gyroscopes)

  • 이민영;이수용
    • 제어로봇시스템학회논문지
    • /
    • 제16권9호
    • /
    • pp.866-871
    • /
    • 2010
  • Gait analysis is essential for leg diagnosis and rehabilitation for the patients, the handicapped and the elderly. The use of 3D motion capture device for gait analysis is very common for gait analysis. However, this device has several shortcomings including limited workspace, visibility and high price. Instead, we developed gait estimation system using gyroscopes. This system provides gait information including the number of gaits, stride and walking distance. With four gyroscope (one for each leg's thigh and calf) outputs, the proposed gait modeling estimates the movements of the hip, the knees and the feet. Complete pedestrian localization is implemented with gait information and the heading angle estimated from the rate gyro and the magnetic compass measurements. The developed system is very useful for diagnosis and the rehabilitation of the pedestrian at the hospital. It is also useful for indoor localization of the pedestrians.

SGCMG를 이용한 단축 불안정 시스템의 안정화 제어 기법 개발 (Stabilization Control Method Development for Single Axis Unstable System Using SGCMG)

  • 이준식;이준용;유지훈;김지철;전동익;오화석
    • 항공우주시스템공학회지
    • /
    • 제7권4호
    • /
    • pp.12-17
    • /
    • 2013
  • Control Moment Gyroscope(CMG) is one of the most efficient momentum exchange devices for satellite attitude control and essential device for agile maneuver system. This paper presents the details of a designed Single Gimbal CMG with a constant speed momentum wheel and single axis attitude control unstable to stable. In order to keep the naturally unstable equivalent point, it should be controlling the gimbal constantly. The experimental data are compared with theoretical result and requirements are used to verify their performance specifications.

TRACKING LIFT-PATHS OF A ROBOTIC TOWERCRANE WITH ENCODER SENSORS

  • Suyeul Park;Ghang, Lee;Joonbeom cho;Sungil Hham;Ahram Han;Taekwan Lee
    • 국제학술발표논문집
    • /
    • The 3th International Conference on Construction Engineering and Project Management
    • /
    • pp.250-256
    • /
    • 2009
  • This paper presents a robotic tower-crane system using encoder and gyroscope sensors as path tracking devices. Tower crane work is often associated with falling accidents and industrial disasters. Such problems often incur a loss of time and money for the contractor. For this reason, many studies have been done on an automatic tower crane. As a part of 5-year 23-million-dollar research project in Korea, we are developing a robotic tower crane which aims to improve the safety level and productivity. We selected a luffing tower crane, which is commonly used in urban construction projects today, as a platform for the robotic tower crane system. This system comprises two modules: the automated path planning module and the path tracking module. The automated path planning system uses the 3D Cartesian coordinates. When the robotic tower crane lifts construction material, the algorithm creates a line, which represents a lifting path, in virtual space. This algorithm seeks and generates the best route to lift construction material while avoiding known obstacles from real construction site. The path tracking system detects the location of a lifted material in terms of the 3D coordinate values using various types of sensors including adopts encoder and gyroscope sensors. We are testing various sensors as a candidate for the path tracking device. This specific study focuses on how to employ encoder and gyroscope sensors in the robotic crane These sensors measure a movement and rotary motion of the robotic tower crane. Finally, the movement of the robotic tower crane is displayed in a virtual space that synthesizes the data from two modules: the automatically planned path and the tracked paths. We are currently field-testing the feasibility of the proposed system using an actual tower crane. In the next step, the robotic tower crane will be applied to actual construction sites with a following analysis of the crane's productivity in order to ascertain its economic efficiency.

  • PDF

An Introduction of Myo Armband and Its Comparison with Motion Capture Systems

  • Cho, Junghun;Lee, Jang Hyung;Kim, Kwang Gi
    • Journal of Multimedia Information System
    • /
    • 제5권2호
    • /
    • pp.115-120
    • /
    • 2018
  • Recently, ways for accurately measuring the three dimensional movements of hand are actively researched so as to utilize the measurement data for therapeutic and rehabilitation programs. This research paper aims to introduce a product called Myo Armband, a wearable device comprised of a 3-axis accelerometer, a 3 axis gyroscope, and electromyographic sensors. We compare Armband's performance with that of the Motion Capture System, which is known as a device for providing fairly accurate measurements for angular movements of objects. Dart throwing and wrist winding motions comprised movement scenarios. This paper also discusses one of Armband's advantages - portability, and suggests its potential as a substitute for previously used devices. Decent levels of measurement accuracy were obtained which were comparable to that of three dimensional measurement device.

각속도계 적용을 위한 이중 질량 시스템의 주파수 응답에 관한 연구 (A study on frequency response of two-mass system for gyroscope applications)

  • 황영석;정형균;송은석;백창욱;김용권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 Techno-Fair 및 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.154-155
    • /
    • 2007
  • This paper describes frequency response of two-mass system for gyroscope applications. The two-mass system of the proposed device is adapted to the sensing part of the gyroscope in this research. Two-mass system has two resonant peaks and wide flat region between two resonant peaks. The resonant frequency of driving part is in this flat region. Therefore, frequency tuning is not necessary for mode matching. In the proposed device, resonant frequency is designed as 7183 Hz in driving part. Mass ratio of two masses in sensing part is 0.1 and device size is 6 mm $\times$ 6 mm. The device is fabricated by SiOG process. The fabricated spring width is increased from $4{\mu}m$ to $4.5{\sim}4.7{\mu}m$, and the measured resonant frequency is 8392 Hz in driving mode. We operated the sensing part using parallel plate of proof mass to verify the sensing part. It is confirmed the device has a wide fiat region in frequency response curve and the resonant frequency of the driving part is in the wide flat region of sensing mode.

  • PDF

스마트폰 센서를 이용하여 행동을 인식하기 위한 계층적인 심층 신뢰 신경망 (Hierarchical Deep Belief Network for Activity Recognition Using Smartphone Sensor)

  • 이현진
    • 한국멀티미디어학회논문지
    • /
    • 제20권8호
    • /
    • pp.1421-1429
    • /
    • 2017
  • Human activity recognition has been studied using various sensors and algorithms. Human activity recognition can be divided into sensor based and vision based on the method. In this paper, we proposed an activity recognition system using acceleration sensor and gyroscope sensor in smartphone among sensor based methods. We used Deep Belief Network (DBN), which is one of the most popular deep learning methods, to improve an accuracy of human activity recognition. DBN uses the entire input set as a common input. However, because of the characteristics of different time window depending on the type of human activity, the RBMs, which is a component of DBN, are configured hierarchically by combining them from different time windows. As a result of applying to real data, The proposed human activity recognition system showed stable precision.