• Title/Summary/Keyword: Gyroscope System

Search Result 212, Processing Time 0.031 seconds

The Design of a 2-Dim stabilizing System Using the DSP(TMS320F240), Gyroscope, Direct Driving motor/ driver (DSP(TMS320F240), 자이로센서, 직접드라이버/ 전동기를 이용한 2차원 안정화 시스템 설계)

  • 류정오
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.5
    • /
    • pp.1025-1030
    • /
    • 2001
  • As the pre-stage of making 3D stabilizing systems, at this paper designed 2D stabilizing system. This is composed of two axes stabilizing platform to preserve targeted direction while vehicle is moving. The system maintains stabilization by recovering error using the rate gyro with DSP TMS320F240 as controller, vibratory rate gyro (Tokimec co. TFG -l60D) as gyro scope, SD1015B52-1·SD1004C04-l/DM1015B DM1004C as direct drive driver/motor, PI control as control algorithm. This paper got a comparably good stabilization.

  • PDF

Analysis and application of the dynamically tuned gyroscope (Angular velocity sensor of EOTS) (동조자이로스코프의 해석 및 응용 (전자광학추적기의 회전각속도 센서))

  • Im, Sung-Woon
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.4
    • /
    • pp.47-56
    • /
    • 1996
  • The basic principle and characteristics of a DTG(dynamically tuned gyroscope) are presented in this paper, which is used for the detection of disturbance and for the stabilization of gimbal. An accurate model of the rate mode DTG is proposed. This model has a resonance characteristics which is more similar to the characteristics of practical systems than the conventional 2nd order system model. Therefore, this model is applicable to the general rate mode gyroscope. Some problems at using DTG for a real electro optical tracking system are discussed and a solution is described.

  • PDF

Control of an Inverted Pendulum System with a Solid-State Inertial Sensor (반도체형 관성 센서를 이용한 도립진자 제어)

  • Choi, Ho-Joon;Lee, Jun-Beom;Hong, Suk-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2061-2063
    • /
    • 2003
  • This paper presents a method to compensate the drift of solid-state inertial sensors for control applications. A solid-state gyroscope is evaluated via both theoretical and experimental analyses. From the analytical results, a heuristic compensation method for the drift of the gyroscope is proposed. Experimental results on inverted pendulum control show that the proposed method is feasible since compensated signals from the gyroscope are successfully used in the feedback loop to control the inverted pendulum system.

  • PDF

Improvement of Sense Mode Bandwidth of Vibratory Silicon-On-Glass Gyroscope Using Dual-Mass System (이중 질량체를 사용한 진동형 자이로스코프의 검출부 대역폭 개선)

  • Hwang, Yong-Suk;Kim, Yong-Kweon;Ji, Chang-Hyeon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.9
    • /
    • pp.1733-1740
    • /
    • 2011
  • In this research, a MEMS vibratory gyroscope with dual-mass system in the sensing mode has been proposed to increase the stability of the device using wide bandwidth. A wide flat region between the two resonance peaks of the dual-mass system removes the need for a frequency matching typically required for single mass vibratory gyroscopes. Bandwidth, mass ratio, spring constant, and frequency response of the dual-mass system have been analyzed with MATLAB and ANSYS simulation. Designed first and second peaks of sensing mode are 5,917 and 8,210Hz, respectively. Driving mode resonance frequency of 7,180Hz was located in the flat region between the two resonance peaks of the sensing mode. The device is fabricated with anodically bonded silicon-on-glass substrate. The chip size is 6mm x 6mm and the thickness of the silicon device layer is $50{\mu}m$. Despite the driving mode resonance frequency decrease of 2.8kHz and frequency shift of 176Hz from the sensing mode due to fabrication imperfections, measured driving frequency was located within the bandwidth of sensing part, which validates the utilized dual-mass concept. Measured bandwidth was 768Hz. Sensitivity calculated with measured displacement of driving and sensing parts was 22.4aF/deg/sec. Measured slope of the sensing point was 0.008dB/Hz.

Seismic Anslysis of Rotating Machine-Foundation System (회전기계-기초의 상호작용을 고려한 지진해석)

    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.2
    • /
    • pp.1-12
    • /
    • 1998
  • The seismic behaviour of rotating machine-foundation systems subjected to six-component nonstationary earthquake ground accelerations is analyzed. The rotating machine-foundation system is idealized by using discs, rotating shaft, fluid-film journal bearings, pedestals, and space frame foundation. Thus, governing equations of motion for the rotating machine-foundation system are obtained by considering Gyroscopic effect, Coriolis effect, dynamic characteristics of fluid-film journal bearings, and translational and rotational motions of seismic rigid base. The influences due to Gyroscopic effects, Coriolis effects, and rotational motions of seismic base on the overall structural response are demonstrated by a numerical example. The results show that the inclusion of base rotations and Gyroscopic effects contributes significantly to the system response.

  • PDF

Kalman Filter Design For Aided INS Considering Gyroscope Mixed Random Errors (자이로의 불규칙 혼합잡음을 고려한 보조항법시스템 칼만 필터 설계)

  • Seong, Sang-Man
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.4
    • /
    • pp.47-52
    • /
    • 2006
  • Using the equivalent ARMA model representation of the mixed random errors, we propose Klaman filter design methods for aided INS(Inertial Navigation System) which contains the gyroscope mixed random errors. At first step, considering the characteristic of indirect feedback Kalman filter used in the aided INS, we perform the time difference of equivalent ARMA model. Next, according to the order of the time differenced ARMA model, we achieve the state space conversion of that by two methods. If the order of AR part is greater than MA part, we use controllable or observable canonical form. Otherwise, we establish the state apace equation via the method that several step ahead predicts are included in the state variable, where we can derive high and low order models depending on the variable which is compensated from gyroscope output. At final step, we include the state space equation of gyroscope mixed random errors into aided INS Kalman filter model. Through the simulation, we show that both the high and low order filter models proposed give less navigation errors compared to the conventional filter which assume the mixed random errors as white noise.

Digital North Finding Method based on Fiber Optic Gyroscope (FOG를 이용한 디지털 진북추종 방식)

  • Kim Sung-jin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.6
    • /
    • pp.1356-1363
    • /
    • 2005
  • In the gyrocompass system, the use of the fiber optic gyroscope(FOG) makes this traditional system considerably attractive because it has strong points in terms of weight, power, warming-up time, and cost. In this paper, a novel digital north-finding method based upon an FOG, which can be applied to the gyrocompass system, is proposed. The analytical model for the earth signal of the FOG is described, and the earth signals passed through lock-in amplifiers are modeled. Additionally, a north-finding algorithm using two lock-in amplifier outputs is developed, and the proposed method is organized by the developed algorithm. Simulation results are included to verify the performance of the proposed method.

A wireless sensor with data-fusion algorithm for structural tilt measurement

  • Dan Li;Guangwei Zhang;Ziyang Su;Jian Zhang
    • Smart Structures and Systems
    • /
    • v.31 no.3
    • /
    • pp.301-309
    • /
    • 2023
  • Tilt is a key indicator of structural safety. Real-time monitoring of tilt responses helps to evaluate structural condition, enable cost-effective maintenance, and enhance lifetime resilience. This paper presents a prototype wireless sensing system for structural tilt measurement. Long range (LoRa) technology is adopted by the sensing system to offer long-range wireless communication with low power consumption. The sensor integrates a gyroscope and an accelerometer as the sensing module. Although tilt can be estimated from the gyroscope or the accelerometer measurements, these estimates suffer from either drift issue or high noise. To address this challenging issue and obtain more reliable tilt results, two sensor fusion algorithms, the complementary filter and the Kalman filter, are investigated to fully exploit the advantages of both gyroscope and accelerometer measurements. Numerical simulation is carried out to validate and compare the sensor fusion algorithms. Laboratory experiment is conducted on a simply supported beam under moving vehicle load to further investigate the performance of the proposed wireless tilt sensing system.

Vibrotactile Glove Mouse (진동촉각 글러브 마우스)

  • Park, Jun-Hyung;Jeong, Ju-Seok;Jang, Tae-Jeong
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.741-744
    • /
    • 2009
  • In this paper, We introduce the glove mouse using a Gyroscope, acceleration sensor, Pin-type Viboratctile Display Device and USB HID. The device recognize a user's wrist by Gyroscope and acceleration sensor in the glove and transmit the data to USB dongle which is recognized the manufactured mouse by Blutooth. Also, using a special application, We transmit the tactile information to user through the Pin-type Vibrotactile Display. We implement wearable system in the glove except USB device. If user want to use general spatial mouse, we recognize mouse USB dongle only without another application. If user want to feel the tactile sensationn, we can use by connecting PC serial communication port to USB dongle.

  • PDF

Technology of Control Moment Gyroscope and its Industrial Trend (제어 모멘트 자이로의 기술과 산업동향)

  • Lee, Seon-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.1
    • /
    • pp.86-92
    • /
    • 2012
  • The well-used actuators for the attitude control of spacecrafts are thruster, reaction wheel, control moment gyroscope, and magnetic torquer. Among them, the control moment gyroscope(CMG) which generates the torque based on the gyroscopic principle in physics, has an advantage of the high torque output compared to the low power consumption. This paper introduces an outline of CMG hardware technology, its application history in spacecrafts, and their associated hardware characteristics. Moreover, its spin-off cases to the other industrial fields such as ship, robotics, and MEMS including their research trend are provided.