• Title/Summary/Keyword: Gyroscope Sensors

Search Result 110, Processing Time 0.026 seconds

Feasibility study on an acceleration signal-based translational and rotational mode shape estimation approach utilizing the linear transformation matrix

  • Seung-Hun Sung;Gil-Yong Lee;In-Ho Kim
    • Smart Structures and Systems
    • /
    • v.32 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • In modal analysis, the mode shape reflects the vibration characteristics of the structure, and thus it is widely performed for finite element model updating and structural health monitoring. Generally, the acceleration-based mode shape is suitable to express the characteristics of structures for the translational vibration; however, it is difficult to represent the rotational mode at boundary conditions. A tilt sensor and gyroscope capable of measuring rotational mode are used to analyze the overall behavior of the structure, but extracting its mode shape is the major challenge under the small vibration always. Herein, we conducted a feasibility study on a multi-mode shape estimating approach utilizing a single physical quantity signal. The basic concept of the proposed method is to receive multi-metric dynamic responses from two sensors and obtain mode shapes through bridge loading test with relatively large deformation. In addition, the linear transformation matrix for estimating two mode shapes is derived, and the mode shape based on the gyro sensor data is obtained by acceleration response using ambient vibration. Because the structure's behavior with respect to translational and rotational mode can be confirmed, the proposed method can obtain the total response of the structure considering boundary conditions. To verify the feasibility of the proposed method, we pre-measured dynamic data acquired from five accelerometers and five gyro sensors in a lab-scale test considering bridge structures, and obtained a linear transformation matrix for estimating the multi-mode shapes. In addition, the mode shapes for two physical quantities could be extracted by using only the acceleration data. Finally, the mode shapes estimated by the proposed method were compared with the mode shapes obtained from the two sensors. This study confirmed the applicability of the multi-mode shape estimation approach for accurate damage assessment using multi-dimensional mode shapes of bridge structures, and can be used to evaluate the behavior of structures under ambient vibration.

Inhalation Configuration Detection for COVID-19 Patient Secluded Observing using Wearable IoTs Platform

  • Sulaiman Sulmi Almutairi;Rehmat Ullah;Qazi Zia Ullah;Habib Shah
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.6
    • /
    • pp.1478-1499
    • /
    • 2024
  • Coronavirus disease (COVID-19) is an infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. COVID-19 become an active epidemic disease due to its spread around the globe. The main causes of the spread are through interaction and transmission of the droplets through coughing and sneezing. The spread can be minimized by isolating the susceptible patients. However, it necessitates remote monitoring to check the breathing issues of the patient remotely to minimize the interactions for spread minimization. Thus, in this article, we offer a wearable-IoTs-centered framework for remote monitoring and recognition of the breathing pattern and abnormal breath detection for timely providing the proper oxygen level required. We propose wearable sensors accelerometer and gyroscope-based breathing time-series data acquisition, temporal features extraction, and machine learning algorithms for pattern detection and abnormality identification. The sensors provide the data through Bluetooth and receive it at the server for further processing and recognition. We collect the six breathing patterns from the twenty subjects and each pattern is recorded for about five minutes. We match prediction accuracies of all machine learning models under study (i.e. Random forest, Gradient boosting tree, Decision tree, and K-nearest neighbor. Our results show that normal breathing and Bradypnea are the most correctly recognized breathing patterns. However, in some cases, algorithm recognizes kussmaul well also. Collectively, the classification outcomes of Random Forest and Gradient Boost Trees are better than the other two algorithms.

Activity Recognition of Workers and Passengers onboard Ships Using Multimodal Sensors in a Smartphone (선박 탑승자를 위한 다중 센서 기반의 스마트폰을 이용한 활동 인식 시스템)

  • Piyare, Rajeev Kumar;Lee, Seong Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.9
    • /
    • pp.811-819
    • /
    • 2014
  • Activity recognition is a key component in identifying the context of a user for providing services based on the application such as medical, entertainment and tactical scenarios. Instead of applying numerous sensor devices, as observed in many previous investigations, we are proposing the use of smartphone with its built-in multimodal sensors as an unobtrusive sensor device for recognition of six physical daily activities. As an improvement to previous works, accelerometer, gyroscope and magnetometer data are fused to recognize activities more reliably. The evaluation indicates that the IBK classifier using window size of 2s with 50% overlapping yields the highest accuracy (i.e., up to 99.33%). To achieve this peak accuracy, simple time-domain and frequency-domain features were extracted from raw sensor data of the smartphone.

Evaluation and Selection of MEMS-Based Inertial Sensor to Implement Inertial Measurement Unit for a Small-Sized Vessel (소형 선박용 관성측정장치 개발을 위한 MEMS 기반 관성 센서의 평가와 선정)

  • Yim, Jeong-Bin
    • Journal of Navigation and Port Research
    • /
    • v.35 no.10
    • /
    • pp.785-791
    • /
    • 2011
  • This paper describes the evaluation and selection of MEMS(Micro-Elect Mechanical System) based inertial sensor to fit to implement the Inertial Measurement Unit(IMU) for a small-sized vessel at sea. At first, the error model and the noise model of the inertial sensors are defined with Euler's equations and then, the inertial sensor evaluation is carried out with Allan Variance techniques and Monte Carlo simulation. As evaluation results for the five sensors, ADIS16405, SAR10Z, SAR100Grade100, LIS344ALH and ADXL103, the combination of gyroscope and accelerometer of ADIS16405 is shown minimum error having around 160 m/s standard deviation of velocity error and around 35 km standard deviation of position error after 600 seconds. Thus, we select the ADIS16405 inertial sensor as a MEMS-based inertial sensor to implement IMU and, the error reducing method is also considered with the search for reference papers.

Design and Implementation of a Smart Signage System based on the Internet of Things(IoT) for Elevators

  • Ryu, Hyunmi;Lee, Guisun;Park, Sunggon;Cho, Sungguk;Jeon, Byungkook
    • International journal of advanced smart convergence
    • /
    • v.8 no.3
    • /
    • pp.184-192
    • /
    • 2019
  • The existing digital signage systems inside the elevators are a lack of tailored contents appropriate to the space and environment inside or outside the elevators. Also, they almost impossible to flexibly respond to various contents disclosure according to the demand of the consumers or the elevator markets. Therefore we design and implement an IoT(Internet of Things)-based smart digital signage system for the safety of elevator passengers.. In order to provide IoT-based information to the smart digital signage within the elevator, we propose an IoT system as a set-top box with gyroscope sensor, acceleration sensor, RFID(Radio-Frequency Identification), fine dust sensor, etc., which processes various data collected by the sensors and provides the elevator passengers with various tailored contents such as elevator driving information, environmental information inside and outside the elevator, and disaster information in addition to simple advertisement information. The proposed IoT system is a set-top box that operates the smart digital signage and has an independent information control processor based on the IoT sensors that do not depend on the elevator control system. For the proposed smart digital signage, it supports an operating system that is independent of the elevator driving service as well as the media service. So the smart signage system has a characteristic that it does not depend on the elevator control system since it is a stand-along IoT-based information control system. With the proposed system providing intuitive content for the surge, steep descent, and radical movements of an elevator due to an emergency situation, the elevator passengers should be able to recognize the situation quickly and respond accordingly. In the near future, the proposed system will expand the market of digital signage applied in conjunction with the development of contents in the disaster, safety and environment fields, and expect expected to revitalize related industries associated with signage.

Custom Metadata Storage Method Using XMP (XMP를 이용한 커스텀 메타데이터 저장 방법)

  • Hyun, Chang-Jong;Kim, Dong-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.2
    • /
    • pp.323-330
    • /
    • 2019
  • Recently, as the growth of the Internet has led to a rapid increase in the consumption of multimedia such as photographs and moving images, the importance of metadata has been emphasized. In the case of existing metadata, only limited information such as GPS value or focal length according to the format is stored. However, with the development of mobile devices and multimedia acquisition devices, various sensors can be used in the devices. Therefore, this paper describes a method that can store not only the existing metadata format information at the time of multimedia acquisition but also another existing format of metadata such as information of various sensors which is the gyroscope and acceleration sensor of the device. We propose an application program that provides moving location information. The proposed method is expected to provide various applications such as image matching and effective image classification.

Human Motion Tracking With Wireless Wearable Sensor Network: Experience and Lessons

  • Chen, Jianxin;Zhou, Liang;Zhang, Yun;Ferreiro, David Fondo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.5
    • /
    • pp.998-1013
    • /
    • 2013
  • Wireless wearable sensor networks have emerged as a promising technique for human motion tracking due to the flexibility and scalability. In such system several wireless sensor nodes being attached to human limb construct a wearable sensor network, where each sensor node including MEMS sensors (such as 3-axis accelerometer, 3-axis magnetometer and 3-axis gyroscope) monitors the limb orientation and transmits these information to the base station for reconstruction via low-power wireless communication technique. Due to the energy constraint, the high fidelity requirement for real time rendering of human motion and tiny operating system embedded in each sensor node adds more challenges for the system implementation. In this paper, we discuss such challenges and experiences in detail during the implementation of such system with wireless wearable sensor network which includes COTS wireless sensor nodes (Imote 2) and uses TinyOS 1.x in each sensor node. Since our system uses the COTS sensor nodes and popular tiny operating system, it might be helpful for further exploration in such field.

Correction Algorithm for PDR Performance Improvement through Smartphone Motion Sensors (보행자 추측 항법 성능 향상을 위한 스마트폰 전용 모션 센서 보정 알고리즘)

  • Kim, Do Yun;Choi, Lynn
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.3
    • /
    • pp.148-155
    • /
    • 2017
  • In this paper, we develop a new system to estimate the step count for a smartphone user. The system analyzes data obtained from the accelerometer, magnetic sensor, and gyroscope of an android smartphone to extract pattern information of human steps. We conduct an experiment and evaluation to confirm that the proposed system successfully estimates the number of steps with 96% accuracy when hand-held and 95.5% accuracy when in-pocket. In addition, we found that detection errors were caused by human motions such as touching the screen, shaking the device up and down, sitting up and sitting down, and waving the phone around.

Autorotation of square plates, with application to windborne debris

  • Martinez-Vazquez, P.;Sterling, M.;Baker, C.J.;Quinn, A.D.;Richards, P.J.
    • Wind and Structures
    • /
    • v.14 no.2
    • /
    • pp.167-186
    • /
    • 2011
  • This paper presents the results of measurements relating to the aerodynamic forces on flat square plates which were allowed to rotate at different speeds about their horizontal axis, by modifying the velocity of the incoming flow. A 1 m square test-sheet and a 0.3 m square test-sheet were fitted with a number of pressure sensors in order to obtain information relating to the instantaneous pressure distribution acting on the test-sheet; a compact gyroscope to record the angular velocity during the rotational motion was also implemented. Previous work on autorotation has illustrated that the angular velocity varies with respect to the torque induced by the wind, the thickness and aspect ratio of the test-sheet, any frictional effects present at the bearings, and the vorticity generated through the interaction between the plate and the wind flow. The current paper sets out a method based on the solution of the equation of motion of a rotating plate which enables the determination of angular velocities on autorotating elements to be predicted. This approach is then used in conjunction with the experimental data in order to evaluate the damping introduced by the frictional effects at the bearings during steady autorotation.

Balancing and Driving Control of a Bicycle Robot (자전거로봇의 균형제어 및 주행)

  • Lee, Suk-In;Lee, In-Wook;Kim, Min-Sung;He, He;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.6
    • /
    • pp.532-539
    • /
    • 2012
  • This paper proposes a balancing and driving control system for a bicycle robot. A reaction wheel pendulum control method is adopted to maintain the balance while the bicycle robot is driving. For the driving control, PID control algorithm with a variable gain adjustment has been developed in this paper, where the gains are heuristically adjusted during the experiments. To measure the angles of the wheels the encoders are used. For the balancing control, a roll controller is designed with a non-model based algorithm to make the shortest cycle. The tilt angle is measured by the fusion of the acceleration and gyroscope sensors, which is used to generate the control input of the roll controller to make the tilt angle zero. The performance of the designed control system has been verified through the real experiments with the developed bicycle robot.