• Title/Summary/Keyword: Gyroscope Sensors

Search Result 109, Processing Time 0.031 seconds

Implementation of Rule-based Smartphone Motion Detection Systems

  • Lee, Eon-Ju;Ryou, Seung-Hui;Lee, So-Yun;Jeon, Sung-Yoon;Park, Eun-Hwa;Hwang, Jung-Ha;Choi, Doo-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.7
    • /
    • pp.45-55
    • /
    • 2021
  • Information obtained through various sensors embedded in a smartphone can be used to identify and analyze user's movements and situations. In this paper, we propose two rule-based motion detection systems that can detect three alphabet motions, 'I', 'S', and 'Z' by analyzing data obtained by the acceleration and gyroscope sensors in a smartphone. First of all, the characteristics of acceleration and angular velocity for each motion are analyzed. Based on the analysis, two rule-based systems are proposed and implemented as an android application and it is used to verify the detection performance for each motion. Two rule-based systems show high recognition rate over 90% for each motion and the rule-based system using ensemble shows better performance than another one.

Vibrotactile Space Mouse (진동촉각 공간 마우스)

  • Park, Jun-Hyung;Choi, Ye-Rim;Lee, Kwang-Hyung;Back, Jong-Won;Jang, Tae-Jeong
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.337-341
    • /
    • 2008
  • This paper presents a vibrotactile space mouse which use pin-type vibrotactile display modules and a gyroscope chip. This mouse is a new interface device which is not only an input device as an ordinary space mouse but also a tactile output device. It consists of a space mouse which use gyroscope chip and vibrotactile display modules which have been developed in our own laboratory. Lately, by development of vibrotactile display modules which have small size and consume low power, vibrotactile displays are available in small sized embedded systems such as wireless mouses or mobile devices. Also, development of new sensors like miniature size gyroscope by MEMS technology enables manufacturing of a small space mouse which can be used in the air not in a plane. The vibrotactile space mouse proposed in this paper recognizes motion of a hand using the gyroscope chip and transmits the data to PC through Bluetooth. PC application receives the data and moves pointer. Also, 2 by 3 arrays of pin-type vibrotactile actuators are mounted on the front side of the mouse where fingers of a user's hand contact, and those actuators could be used to represent various information such as gray-scale of an image or Braille patterns for visually impared persons.

  • PDF

Fiber-Optic Sensors

  • 김병운
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1988.06a
    • /
    • pp.104-104
    • /
    • 1988
  • Single-mode 광섬유를 이용한 Sersor 및 그와 관련된 광섬유 device 의 작동원리 및 연구동향에 대하여 논의하였다. 논의된 광섬유 sersor 로는 intensity type sersor, fiber gyroscope, sensor array 등이 포함되어 있고, 관련 부품으로는 directional coupler, acousto-optic, fiber-optic amplifier 등이 설명되었다.

  • PDF

A Convergent Study on the Design and Technology for the Production of Turn Signals for Personal Mobility Devices Using Gyroscope Sensors (퍼스널 모빌리티 제품용 자이로스코프 센서를 이용한 방향지시등 제작을 위한 디자인과 기술에 관한 융복합 연구)

  • Kang, Hee-Ra
    • Journal of Digital Convergence
    • /
    • v.14 no.3
    • /
    • pp.373-379
    • /
    • 2016
  • As the five-day workweek has been implemented in Korea many people are focusing their attention on hobbies, leisure activities or camping to enjoy the weekend. Recently many workers are purchasing personal mobility devices for commute, due to the launch of cheap personal mobility devices by Xiaomi. Under such circumstances, this study aimed to develop turn signals by using gyroscope sensors for safe use of personal mobility devices or for leisure activities. This study focused on previous cases of turn signal production for the safety during leisure activities or for personal mobility devices and analyzed their cases and identified problems. This study further presented an alternative design to overcome such problems and to develop turn signals for the safety of users. This is ring shape and included LED and then it expresses user's direction for backside. This study is one of the solution for safety of personal mobility product user.

Step size determination method using neural network for personal navigation system (개인휴대 추측항법 시스템을 위한 신경망을 이용한 보폭 결정 방법)

  • 윤선일;홍진석;지규인
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.80-80
    • /
    • 2000
  • The GPS can provide accurate position information on the earth. But GPS receiver can't give position information inside buildings. DR(Dead-Reckoning) or INS(Inertial Navigation System) gives position information continuously indoors as well as outdoors, because they do not depend on the external navigation information. But in general, the inertial sensors severely suffer from their drift errors, the error of these navigation system increases with time. GPS and DR sensors can be integrated together with Kalman filter to overcome these problems. In this paper, we developed a personal navigation system which can be carried by person, using GPS and electronic pedometer. The person's footstep is detected by an accelerometer installed in vertical direction and the direction of movement is sensed by gyroscope and magnetic compass. In this case the step size is varying with person and changing with circumstance, so determining step size is the problem. In order to calculate the step size of detected footstep, the neural network method is used. The teaming pattern of the neural network is determined by human walking pattern data provided by 3-axis accelerometer and gyroscope. We can calculate person's location with displacement and heading from this information. And this neural network method that calculates step size gives more improved position information better than fixed step size.

  • PDF

The Analysis of the Activity Patterns of Dog with Wearable Sensors Using Machine Learning

  • Hussain, Ali;Ali, Sikandar;Kim, Hee-Cheol
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.141-143
    • /
    • 2021
  • The Activity patterns of animal species are difficult to access and the behavior of freely moving individuals can not be assessed by direct observation. As it has become large challenge to understand the activity pattern of animals such as dogs, and cats etc. One approach for monitoring these behaviors is the continuous collection of data by human observers. Therefore, in this study we assess the activity patterns of dog using the wearable sensors data such as accelerometer and gyroscope. A wearable, sensor -based system is suitable for such ends, and it will be able to monitor the dogs in real-time. The basic purpose of this study was to develop a system that can detect the activities based on the accelerometer and gyroscope signals. Therefore, we purpose a method which is based on the data collected from 10 dogs, including different nine breeds of different sizes and ages, and both genders. We applied six different state-of-the-art classifiers such as Random forests (RF), Support vector machine (SVM), Gradient boosting machine (GBM), XGBoost, k-nearest neighbors (KNN), and Decision tree classifier, respectively. The Random Forest showed a good classification result. We achieved an accuracy 86.73% while the detecting the activity.

  • PDF

Fuzzy Inference System for Data Calibration of Gyroscope Free Inertial Navigation System (Gyroscope Free 관성 항법 장치의 데이터 보정을 위한 퍼지 추론 시스템)

  • Kim, Jae-Yong;Kim, Jung-Min;Woo, Seung-Beom;Kim, Sung-Shin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.4
    • /
    • pp.518-524
    • /
    • 2011
  • This paper presents a study on the calibration of accelerometer data in the gyroscope free inertial navigation system(GFINS) using fuzzy inference system(FIS). The conventional INS(inertial navigation system) which can measure yaw rate and linear velocity using inertial sensors as the gyroscope and accelerometer. However, the INS is difficult to design as small size and low power because it uses the gyroscope. To solve the problem, the GFINS which does not have the gyroscope have been studied actively. However, the GFINS has cumulative error problem still. Hence, this paper proposes Fuzzy-GFINS which can calibrate the data of an accelerometer using FIS consists of two inputs that are ratio between linear velocity of the autonomous ground vehicle(AGV) and the accelerometer and ratio between linear velocity of the encoders and the accelerometer. To evaluate the proposed Fuzzy-GFINS, we made the AGV with Mecanum wheels and applied the proposed Fuzzy-GFINS. In experimental result, we verified that the proposed method can calibrate effectively data of the accelerometer in the GFINS.

Design of a Low Noise 6-Axis Inertial Sensor IC for Mobile Devices (모바일용 저잡음 6축 관성센서 IC의 설계)

  • Kim, Chang Hyun;Chung, Jong-Moon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.2
    • /
    • pp.397-407
    • /
    • 2015
  • In this paper, we designed 1 chip IC for 3-axis gyroscope and 3-axis accelerometer used for various IoT/M2M mobile devices such as smartphone, wearable device and etc. We especially focused on analysis of gyroscope noise and proposed new architecture for removing various noise generated by gyroscope MEMS and IC. Gyroscope, accelerometer and geo-magnetic sensors are usually used to detect user motion or to estimate moving distance, direction and relative position. It is very important element to designing a low noise IC because very small amount of noise may be accumulated and affect the estimated position or direction. We made a mathematical model of a gyroscope sensor, analyzed the frequency characteristics of MEMS and circuit, designed a low noise, compact and low power 1 chip 6-axis inertial sensor IC including 3-axis gyroscope and 3-axis accelerometer. As a result, designed IC has 0.01dps/${\sqrt{Hz}}$ of gyroscope sensor noise density.

Verification of Missile Angular Velocity Calculation Using FMS (FMS를 이용한 대전차 유도탄의 각속도 계산식 검증)

  • Park, Eo-Jin;Kim, Wan-Shik;Park, Chan-Gook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.10
    • /
    • pp.992-997
    • /
    • 2009
  • This paper focuses on the calculation of the missile angular velocity under the reduced sensor condition and its verification using the Flight Motion Simulator(FMS). The missile angular velocity is usually measured by the body gyroscopes, but we assume that the inertial sensors on the missile body are in the absence of pitch and yaw gyroscopes. Under this reduced sensor condition, this paper shows the missile angular velocity can be calculated by using the gimbal seeker gyroscope, the roll body gyroscope, the gimbal angle and its rate. The FMS experiment was carried out to verify the proposed algorithm.

A Study on the Error Analysis and Performance Improvement of Low-Cost Inertial Sensors (저급 관성센서의 오차 분석 및 성능 향상에 관한 연구)

  • 박문수;원종훈;홍석교;이자성
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.28-28
    • /
    • 2000
  • Low-cost solid-state inertial sensors of three rate Gyroscopes and a triaxial Accelerometer are evaluated in static and dynamic environments. As a interim result, error models of each inertial sensors are generated. Model parameters with respect to temperature are acquired in static environment. These error models are included in an Extended Kalman Filter(EKF) to compensate bias error due to temperature variation. Experimental results in dynamic environment are included to show the validity of the each error model and the performance improvement of a compensated low cost inertial sensors for a navigational application

  • PDF