• Title/Summary/Keyword: Gyeonggi Bay

Search Result 63, Processing Time 0.033 seconds

Variability of Sea Water Characteristics and Sea Levels Due to Climate Change and Appropriate Adaptation Strategies in Gyeonggi Bay (한국 경기만의 기후 변화에 따른 해수 물리적 특성 및 해수면 영향과 적응 대책)

  • Suah Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.2
    • /
    • pp.98-105
    • /
    • 2023
  • This paper studies the effects of global climate change on Gyeonggi Bay and appropriate adaptation strategies. Located along the west coast of Korea, Gyeonggi Bay is renowned as one of the five most important global tidal flats (wetlands). Due to climate change in Gyeonggi Bay, the water temperature is predicted to increase by 1.44 ℃ by the year 2100, the salinity to decrease by 1.1 PSU, the sea level to rise by 35.2 cm, and approximately 150.5 km2 of the coast to be submerged due to the rising sea levels. Adaptation strategies to combat negative impacts of climate change on the ecological environment of Gyeonggi Bay include 1) supporting the self-adaptation capability of Gyeonggi Bay's natural environment to be sustainable, and 2) protecting lowlands adjacent to tidal flats and low-lying areas of the coast against human involvement to reserve more space for upslope shifts of biota with rising sea levels.

Geophysical Survey of Gyeonggi Bay (경기만(京畿灣) 해저지층구조(海底地層構造)에 대(對)하여)

  • Kim, C.M.;Cho, G.J.;Shin, B.W.
    • Economic and Environmental Geology
    • /
    • v.11 no.3
    • /
    • pp.109-114
    • /
    • 1978
  • Seismic and side scan sonar traverses in the inner part of Gyeonggi bay was completed during 1976 and 1977 to depict the distribution and thickness of holocene sediments. Special attention was given to the locations of sand and gravel resources. The area of sand sediments is about $50km^2$ mostly distributed in outer part of inner bay. Maximum thickness of sand sediments is 40m with the averge of 10-15m. Tidal current prevailing in the bay seems to be the most important agent modifying the distributions and thickness of sediments in the Gyeonggi bay.

  • PDF

Study on the Temporal and Spatial Variations of Salinity by Freshwater Discharge in Gyeonggi Bay (경기만내 담수 유입으로 인한 시·공간적인 염분변화에 대한 연구)

  • Jeong, Jeong Ho;Kim, Kuk Jin;Yang, Keun Ho;Chang, Yoon Young;Park, Sun Hwan;Kim, Young Taeg
    • Journal of Environmental Impact Assessment
    • /
    • v.16 no.6
    • /
    • pp.421-432
    • /
    • 2007
  • To investigate temporal and spatial variations of hydrodynamics and environmental conditions in Gyeonggi Bay, including Han River estuary, numerical experiments were performed using 3-dimensional fine grid numerical ocean model. The model successfully reproduced the physical phenomena already known in Gyeonggi Bay where tide and fresh water discharge are dominant forcings. The calculated harmonic constants of tide and tidal current agreed well with those of observations at nine tide stations and two tidal current stations. Tidal asymmetries along the Yeomha Waterway, mainly caused by non-linear effect, were well reproduced and agreed well with observations. Time series of salinity at four stations(A, B, C and D) and horizontal distributions of monthly averaged salinity show that Gyodong and Seokmo Waterways play an important role in fresh water discharge into the Gyeonggi Bay rather than Yeomha Waterway.

The Fluctuation of Biological Communities as an Effect of Marine Sand Mining in the Gyeonggi Bay (경기만의 해사채취에 의한 생물군집 구조변동)

  • Son, Kyu-Hee;Han, Kyung-Nam
    • Ocean and Polar Research
    • /
    • v.29 no.3
    • /
    • pp.205-216
    • /
    • 2007
  • The purpose of this study was to investigate effects of large scale marine sand mining on the marine ecological community. For the study, four stations along the coast were selected and monitored in 1998 and 2001 at mining areas and non-mining areas about the Gyeonggi Bay. The result revealed that in 1998, 9 species of fishes, 16 species of crustaceans, and 6 species of mollusks were collected where as in 2001, 11 species of fishes, 5 species of crustaceans, and 2 species of mollusks were collected, uncovering the fact that fishes have diversified while crustaceans and mollusks have reduced on a grand scale. Also, there were two key characteristics regarding the changes of biological communities in mining and nonmining areas. The first was the dwindling of crustaceans inhabiting the sand area. This outcome may be accounted for by the facts that physical removal of seabed sediments and re-sediment due to expansion of floating particles cause direct influence on the ocean floor ecosystem and have continuous effect on the communities of crustaceans which feed on them. Secondly, the newly arrived species and their population during spring and summer seasons have increased in the non-mining areas and have decreased in the mining area. It can be concluded that highly nomadic fish species migrate toward areas with less disturbance or destruction of ecosystem from marine sand mining, and consequently, the communities of fishes change in the sea area. Setting aside the characteristics of the investigated sea areas where the arriving conditions of species vary by seasons, the clear differences of population of organisms in those areas are due to environmental alterations owing to the marine sand mining ; if those large-scale marine sand mining activities continue in the Gyeonggi Bay, their effects on biological communities in the areas will only grow.

A study on the unit characteristics and the post-occupancy evaluation of housing unit with 3-bay and 4-bay - Focused on $85m^2$-sized housing units in Dongback, Yongin - (전면 3실형과 전면 4실형 아파트의 평면특성 및 거주후평가 연구 - 용인시 동백지구 전용면적 $85m^2$ 아파트를 중심으로 -)

  • Choo, Sun-Kyong;Kim, Min-Ji;Kang, Boo-Seong
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2008.11a
    • /
    • pp.375-378
    • /
    • 2008
  • The purpose of this study was analyzing characteristics of $85m^2$-sizes housing units with 3-bay and 4-bay and the residents' satisfaction with them. The subjects for analyzing $85m^2$-sizes housing units with 3-bay and 4-bay in the new town, yongin, in Gyeonggi-do. The study result was show that the residents satisfaction who have experienced the 3-bay housing unit than 4-bay housing unit.

  • PDF

Realtime Tide and Storm-Surge Computations for the Yellow Sea Using the Parallel Finite Element Model (병렬 유한요소 모형을 이용한 황해의 실시간 조석 및 태풍해일 산정)

  • Byun, Sang-Shin;Choi, Byung-Ho;Kim, Kyeong-Ok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.29-36
    • /
    • 2009
  • Realtime tide and storm-surge computations for the Yellow Sea were conducted using the Parallel Finite Element Model. For these computations a high resolution grid system was constructed with a minimum node interval of loom in Gyeonggi Bay. In the modeling, eight main tidal constituents were analyzed and their results agreed well with the observed data. The realtime tide computation with the eight main tidal constituents and the storm-surge simulation for Typhoon Sarah(1959) were also conducted using parallel computing system of MPI-based LINUX clusters. The result showed a good performance in simulating Typhoon Sarah and reducing the computation time.

Late Quaternary Stratigraphy and Depositional Environment of Tidal Sand Ridge Deposits in Gyeonggi Bay, West Coast of Korea (서해 경기만 조석사주 퇴적층의 제4기 후기 층서 및 퇴적환경)

  • Choi, Jae-Yong;Kwon, Yi-Kyun;Chung, Gong-Soo
    • Journal of the Korean earth science society
    • /
    • v.33 no.1
    • /
    • pp.1-10
    • /
    • 2012
  • Analysis on high-resolution seismic and core data reveals that the sedimentary strata in Gyeonggi Bay consists of four sedimentary units (Unit I-IV, from top to bottom) formed during the late Quaternary period. Unit I is interpreted as sediments of tidal flat and channel-fill deposits, formed during the Holocene transgression. Unit II is divided into shallow-marine facies unit in offshore area and channelized fluvial to estuarine facies unit in nearshore sand ridge and tidal flat. Unit III is considered as tidal flat deposits with the uppermost severely weathered and oxydized layers. This unit is composed of shallow marine sedimentary successions formed during the MIS-5 highstand. The lowermost Unit IV rests on Mesozoic basement rocks, considered as the shallow marine and shelf deposits formed before the MIS-5 lowstand.

Floristic Survey of Salt Marshes and Dunes on Gyeonggi Bay in Korea (경기만 연안지역의 염생식물 분포)

  • 심현보;서석민;최병희
    • Korean Journal of Environmental Biology
    • /
    • v.20 no.1
    • /
    • pp.25-34
    • /
    • 2002
  • The halophytes were investigated on Gyeonggi Bay from Aug. 1999 to Oct. 2001. The survey was conducted at 38 areas including natural salt marshes, dunes, abandoned salt farms and bank areas. During this study 46 species of halophytes were collected in the areas. Among the halophytes the following 7 species were found at natural salt marshes only; Triglochin maritimum L, Carex scabrifolia Steud., Salicornia herbacea L., Suaedu australis (R. Br.) Moq., S. martima Dum., S. japonica Makino, S. malacosperma Hara, on the other hand 8 species at dunes only; Glehnia littoralis Fr. Schm., Cnidium japonicum Miq., Messerschmidia sibirica L., Ixeris repens A. Gray, Corispermum stauntonii Miq., Vitex rotundifolia L. fil., Ischaemum anthephoroides Miq., Carex kobomugi Ohwi. The distributions of halophytes in each regions are as the followings : Isl. Gyodong-do 21 species, Isl. Seokmo-do 10 species, Isl. Ganghwa-do 28 species, Isl. Jangbong-do 16 species, Isl. Sin & Si-do 10 species, Isl. Daemuui-do 23 species, Isl. Deokjeok-do 23 species, Isl. Ijak-do 10 species, Isl. Yeongheung-do 29 species, Soyra 25 species, Isl. Daebu-do 15 species, Ssangsong-ri 6 species, Hogok-ri 16 species, Maehyang-ri 10 species.

Effects of Temperature and Irradiance on Growth Rate of Skeletonema marinoi-dohrnii Complex Isolated from Gyeonggi Bay, Korea (경기만 해역에서 분리된 Skeletonema marinoi-dohrnii complex의 생장률에 대한 수온과 광도의 영향)

  • Song, Tae Yoon;Yoo, Man Ho;Lee, Youngju;Choi, Joong Ki
    • Korean Journal of Environmental Biology
    • /
    • v.32 no.2
    • /
    • pp.118-128
    • /
    • 2014
  • The growth rate of Skeletonema marinoi-dohrnii complex isolated from Gyeonggi Bay was studied in on axenic batch cultures, under non-nutrient limited condition to determine the growth rate over a wide range of light intensities ($5{\sim}500{\mu}mol\;m^{-2}s^{-1}$) and temperature ($2{\sim}35^{\circ}C$). This species exhibited its maximum specific growth rate of $2.48d^{-1}$ at a combination of $26.1^{\circ}C$ and light intensity of $197{\mu}mol\;m^{-2}s^{-1}$ as associated to optimal conditions of light and temperature. The results supported that S. marinoi-dohrnii complex are more likely to occur in late winter-spring blooms in the western and southern Korea as well as Gyeonggi Bay due to relatively high growth rates ($0.79{\sim}1.61d^{-1}$), considering the effect of temperature on nutrient competition among Skeletonema species. This study might be helpful to improve the precision and reality of a coastal ecosystem model.

Dune Migration on an Offshore Sand Ridge in the Southern Gyeonggi Bay, Korea (경기만 남부지역 사퇴 위에 발달된 dune의 이동)

  • Kum, Byung-Cheol;Shin, Dong-Hyeok
    • Ocean and Polar Research
    • /
    • v.35 no.1
    • /
    • pp.51-61
    • /
    • 2013
  • Two surveys were conducted in January 2006 and September 2007 with multibeam echosounder to investigate the dune shape, migration rate, and bedload transport rate using dune-tracking method on an offshore sand ridge at southern Gyeonggi Bay. The migration rates of dunes range from 1.8 $myr^{-1}$) to 56.0 $myr^{-1}$), at the upper northwestern side of sand ridge towards the southwest direction and from the center of the sand ridge towards the northeast direction respectively. Large (i.e. length 10-100 m) dunes show faster migration (0.3-23.4 $myr^{-1}$) ) than very large (i.e. length > 100 m) dunes because larger dunes have required a larger volume of sediments to be displaced. The decreases in dimensions and migration rates of dunes from the center of sand ridge to the lower part of southeastern side on the sand ridge can be ascribed to the decrease of sandy sediments availability, tidal currents with depth, and the coarsening of surface sediments from the crest of the sand ridge to the trough. Bedload transport rates on the basis of migration rates and dune dimensions decrease from 74.5 $m^2yr^{-1}$) at C transect to 35.6 $m^2yr^{-1}$) at R-02 transect.