• Title/Summary/Keyword: Gwangyang works of POSCO

Search Result 15, Processing Time 0.021 seconds

Machining characteristics on ultrasonic vibration assisted micro-electrical discharge machining of carbon-nanotube reinforced conductive Al2O3 composite (전도성을 가지는 탄소나노튜브강화 알루미나복합소재의 마이크로방전가공에서 초음파진동 부가에 의한 가공특성)

  • Kang, Myung-Chang;Tak, Hyun-Seok;Lee, Chang-Hoon;Kim, Nam-Kyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.6
    • /
    • pp.119-126
    • /
    • 2014
  • Micro-holes of conductive ceramic are required in micro structures. Micro-electrical discharge machining (Micro-EDM) is an effective machining method since EDM is as process for shaping hard metals and complex-shaped holes by spark erosion in all kinds of electro-conductive materials. However, as the depth of micro hole increases, the machining condition becomes more unstable due to inefficient removal of debris between the electrode and the workpiece. In this paper, micro-EDM was performed to evaluate machining characteristic such as electrode wear, machining time, taper angle, radial clearance with varying voltage and ultrasonic vibration on 10 vol.% Carbon-nanotube reinforced conductive $Al_2O_3$ composite fabricated by spark plasma sintering in previous research.

Physiological Characteristics and Death Rate of Planted Trees in Reclaimed Seaside Areas (임해매립지 조경수목의 생리적 특성과 식재수목의 고사율)

  • 박현수;이상석;이상철
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.31 no.2
    • /
    • pp.94-101
    • /
    • 2003
  • The purpose of this paper is to analyze the correlation between Death Rate of Trees (DRT) and the Physiological Characteristics of Trees(PCT) in POSCO Gwangyang works, which is a reclaimed area. To analyze the DRT, 15 species of deciduous trees were selected, for example Ulmus davidiana var., Zelkova serrata, Melia azedarach var. etc. Though there were numerous factors to affect the growing of trees, 5 PCT were considered to be main factors, soil salt tolerance, wind salt tolerance, water needs, transplanting difficulty, and nutrient needs. According to two kinds of soil-base: mound and pot area, we tested the relationship between 5 PCT and DRT by use of t-test and multiple regression analysis. The results are as follows. 1. The DRT of Acer palmatum, Cornus kousa, Magnolia kobus, Liriodendron tulipifera, and Albizzia julibrissin were high by more than 20%. On the other hand, Chionanthus retusa, Ulmus davidiana var. japonica Celtis sinensis, and Lagerstroemia indica were low by less than 10% in the DRT and are considered to be species suitable for planting in reclaimed areas. 2. The DRT of trees in pot areas was meaningfully higher than in mound areas; for this reason the mound technique is desirable as a soil-base for planting in reclaimed areas. 3. In the pot area, the independent variables, in the order of soil salt tolerance, wind salt tolerance, transplanting difficulty, had an effect on the DRT more significantly than in mount area. On the other hand, wind salt tolerance and soil salt tolerance affected the DRT in mount areas. This means that soil salt tolerance, wind salt tolerance, and transplanting difficulty have to be considered as significant factors to the DRT. Although the researchers tried to interpret how the PCT affected the DRT in order to analyze the relationship between the two in reclaimed areas, it was neglected at an experimental level. Therefore, future research should work on this aspect in detail.

COMPUTATIONAL SIMULATION OF FIRE SUPPRESSION SYSTEM FOR CABINS OF SHIPBOARD ENCLOSURE (선박 거주구역용 소화시스템의 전산 시뮬레이션)

  • Jung, I.S.;Chung, H.T.;Han, Y.S.
    • Journal of computational fluids engineering
    • /
    • v.21 no.4
    • /
    • pp.40-45
    • /
    • 2016
  • The numerical simulation has been performed to predict the performance of the fire suppression system for cabin of shipboard enclosure. The present study aims ultimately at finding the optimal parametric conditions of the mist-injecting nozzles using the CFD methods. The open numerical code was used for the present simulation named as FDS (Fire Dynamics Simulator). Application has been done to predict the interaction between water mist and fire plume. In this study, the passenger cabin was chosen as simulation space. The computational domains for simulation in the passenger cabin were determined following the fire scenario of IMO rules. The full scale of the flow field is $W{\times}L{\times}H=4{\times}3{\times}2.4m^3$ with a dead zone of $W{\times}L{\times}H=1.22{\times}1.1{\times}2.4m^3$. The water mist nozzle is installed in ceiling center of 2.3 m height from the floor, and there are six mattresses and four cushions in the simulation space. The combination patterns of orifices to the main nozzle and the position to install nozzles were chosen as the simulation parameters for design applications. From the present numerical results, the centered-located nozzles having evenly combined orifices were shown as the best performance of fire suppression.

A Study on Workers' Exposure to Organic Solvents in Petroleum Refinery (원유정제업 작업자들의 유기용제에 대한 노출 평가)

  • Choi, Sang Jun;Paik, Nam Won;Kim, Jin Kyoung;Choi, Yeon Ki;Jung, Hyun Hee;Heo, Sung-Min
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.15 no.1
    • /
    • pp.27-35
    • /
    • 2005
  • This study was carried out to evaluate the characteristics of petroleum refinery workers' exposure to organic solvents. Exposure assessment was conducted by full shift-based long term personal sampling(TWA-P) and task-based short term personal sampling(STEL-P) strategy. Major organic solvents that workers can be exposed are various, varying from C3~C12, and this study focused on 11 kinds including benzene, considering toxicity and concentration level. In comparison with two sampling results, STEL-P shows a significant(p<0.001) excess of exposure level rather than TWA-P. As the potential risk index for benzene is calculated as 16, benzene should be set the highest priority for control in petroleum refinery industry. The tasks with the highest benzene exposure level were de-watering(AM;99.8 ppm), draining(AM;19.6ppm), sampling(AM;16.2ppm), and manual gauging(AM;15.02ppm). Petroleum refinery workers' exposure pattern to organic solvents differs by tasks performed, and some task has a high risk of temporary extreme exposure. Therefore, traditional 8-hour TWA sampling strategy have possibility of underestimation of exposure level of workers in petroleum refinery.

Development of Continuous Galvanization-compatible Martensitic Steel

  • Gong, Y.F.;Song, T.J.;Kim, Han S.;Kwak, J.H.;De Cooman, B.C.
    • Corrosion Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • The development of martensitic grades which can be processed in continuous galvanizing lines requires the reduction of the oxides formed on the steel during the hot dip process. This reduction mechanism was investigated in detail by means of High Resolution Transmission Electron Microscopy (HR-TEM) of cross-sectional samples. Annealing of a martensitic steel in a 10% $H_2+N_2$ atmosphere with the dew point of $-35^{\circ}C$ resulted in the formation of a thin $_{C-X}MnO.SiO_{2}$ (x>1) oxide film and amorphous $_{a-X}MnO.SiO_{2}$ oxide particles on the surface. During the hot dip galvanizing in Zn-0.13%Al, the thin $_{C-X}MnO.SiO_{2}$ (x>1) oxide film was reduced by the Al. The $_{a-X}MnO.SiO_{2}$ (x<0.9) and $a-SiO_{2}$ oxides however remained embedded in the Zn coating close to the steel/coating interface. No $Fe_{2}Al_{5-X}Zn_{X}$ inhibition layer formation was observed. During hot dip galvanizing in Zn-0.20%Al, the $_{C-X}MnO.SiO_{2}$ (x>1) oxide film was also reduced and the amorphous $_{a-X}MnO.SiO_{2}$ and $a-SiO_{2}$ particles were embedded in the $Fe_{2}Al_{5-X}Zn_{X}$ inhibition layer formed at the steel/coating interface during hot dipping. The results clearly show that Al in the liquid Zn bath can reduce the crystalline $_{C-X}MnO.SiO_{2}$ (x>1) oxides but not the amorphous $_{a-X}MnO.SiO_{2}$ (x<0.9) and $a-SiO_{2}$ oxides. These oxides remain embedded in the Zn layer or in the inhibition layer, making it possible to apply a Zn or Zn-alloy coating on martensitic steel by hot dipping. The hot dipping process was also found to deteriorate the mechanical properties, independently of the Zn bath composition.