• Title/Summary/Keyword: Gwangyang bay

Search Result 192, Processing Time 0.027 seconds

Implications of the Recent Benthec Foraminifera in Gwangyang Bay, Korea (光陽 에서의 現생底棲 有孔蟲에 관한 硏究)

  • 장순권
    • 한국해양학회지
    • /
    • v.21 no.1
    • /
    • pp.1-12
    • /
    • 1986
  • A total of 40 surface samples(12 from the intertidal flat and 28 from the subtidal zone) from Gwangyang Bay, southern coast of the Korean Peninsula show a strong negative relationship between the total foraminiferal abundance and the ratios of the live to the total(L/T) assemblages. This suggests that the foraminiferal abundance is dependent on the dilution due to the input of detrital sediments, and that the L/T ratios show the relative rate of sedimentation in the study area. The intertidal flat and delta area are characterized by the relatively high sedimentation compared to the inner bay and shallow subtidal zone, and three major tidal channels where relatively low and no sedimentation is noted, respectively. Bathymetric occurrence of the species shows distinct boundaries at 9m, and between 21 and 30m, respectively. Cluster analysis shows three biotopes;intertidal flat including delay, inner bay and shallow subtidal zone, and major tidal channels. This suggests that these biotopes are formed by the ecology of the foraminifers as well as by the sedimentological setting of the study area. Several problems in relation to the relative rate of sedimentation inferred from the L/T ratios are briefly discussed.

  • PDF

Origin and Spatial Distribution of Organic Matter at Gwangyang Bay in the Fall (추계 광양만의 유기물 기원과 분포 특성)

  • Lee, Young-Sik;Kang, Chang-Keun;Choi, Yong-Kyu;Lee, Sang-Yong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.1
    • /
    • pp.1-8
    • /
    • 2007
  • Environment factors related to the distribution of organic matter in surface seawater and sediments were investigated to estimate main pollution sources and range of their influence in Gwangyang Bay. The main pollution sources for the factors that affect organic matter distribution could be divided into three main sources: fresh water runoffs from Seomjin and Dong River, Gwangyang-si domestic sewage, and Yosu Industrial Complex. Considering the characteristics in horizontal distributions of the environmental factors in water column, sediment, and water current regime, the influencing range of these main sources was likely to be divided into three areas within the bay as follows: Area I receiving lots of fresh water from Seomjin River, Area II receiving lots of domestic sewage from Gwangyang-si and fresh water of Dong River, Area III receiving lots of materials from Yosu Industrial Complex. Area I seems to be characterized as low salinity, high concentration of $NO_3-N,\;and\;SiO_2-Si$, Area II as low salinity, high concentration of $NO_3-N,\;NH_4-N,\;and\;SiO_2-Si$, and Area III as high water temperature, high concentration of $NH_4-N,\;and\;PO_4-P$ in water column, high concentration of $NH_4-N,\;PO_4-P,\;and\;SiO_2-Si$ in surface sediments.

Isotopic Evidence for Ontogenetic Shift in Food Resource Utilization during the Migration of the Slipmouth Leiognathus nuchalis in Gwangyang Bay, Korea (광양만 주둥치(Leiognathus nuchalis)의 서식처 이동에 의한 먹이원 변동 파악을 위한 안정동위원소 분석기법 적용)

  • Choi, Bohyung;Jo, Hyunbin;Park, Kiyun;Kwak, Ihn-Sil
    • Korean Journal of Ichthyology
    • /
    • v.32 no.2
    • /
    • pp.84-90
    • /
    • 2020
  • We investigated carbon and nitrogen isotope ratios (δ13C and δ15N) of the slipmouth Leiognathus nuchalis to reveal the effects of body size, feeding strategy and spatial distribution on the food resource utilization during the migration in the Seomjin estuary and Gwangyang Bay. The δ13C values of L. nuchalis caught in the Seomjin estuary where the salinity is lower than 30 psu were much lower than those in the deep-bay area of Gwangyang Bay. Such a spatial heterogeneity in δ13C values of the L. nuchalis clearly indicates active feeding within the estuarine habitat. In contrast, the δ15N values of L. nuchalis showed a consistency among sites, indicating that this species occupies identical trophic level across the whole area. The slipmouth distributed throughout the bay area, reflecting its euryhaline characteristics. However, the distribution pattern appeared to be separated according to body size into smaller individuals in the low-saline estuary and larger ones in the deep bay. Overall results support the plastic feeding strategy of the slipmouth from zooplanktonic (estuarine habitat) to epibenthic (deep-bay habitat) feeder during the migration between estuarine to deep-bay habitats.

Suspended Sediment Budget in Gwangyang Bay through the Yeosu Sound (여수 해만을 통한 광양만의 부유퇴적물 수지균형)

  • KIM Dae-Choul;KANG Hyo-Jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.24 no.1
    • /
    • pp.31-38
    • /
    • 1991
  • Suspended sediment budget in Gwangyang Bay was investigated using the data of suspended sediment concentration and vertical distribution of tidal currents at the mouth of the bay in the Yeosu Sound (Yeosu Haeman) . At the mouth of the bay suspended sediment concentration shows much higher value of approximately 17.80mg/l on the average near the bottom than the concentration near the surface where the average is 4.7mg/l. Tidal currents also show an asymmetry in magnitude between flood and ebb. Near the surface ebb is stronger than flood, while flood is stronger than ebb near the bottom. Due to the higher concentration and stronger flood current near the bottom, transport of suspended sediment near the bottom plays a major role to the sediment budget in the bay, and the bay is in net-depositional environment. The western part of the bay seems to gain the suspended sediment of approximately $5.66\times10^8g/day$, which corresponds to a sedimentation rate of about 1.15m/1,000years.

  • PDF

Distribution of Nonylphenol in Gwangyang Bay and the Surrounding Streams (광양만 및 주변 하천에서의 노닐페놀 화합물 분포)

  • 이동호;김민선;심원준;임운혁;홍상희;오재룡
    • Korean Journal of Environmental Biology
    • /
    • v.22
    • /
    • pp.71-77
    • /
    • 2004
  • Alkylphenols (8), chlorophenols (2), bisphenol A, eoprostanols (2) and cholesterol compounds were analyzed in the surface water and surface sediment taken from Gwangyang Bay and surrounding streams in 2001. Among the target analytes, nonylphenol and dihydrocholesteyol compounds were detected with high concentration and high frequency. t-Octylphenol, bisphenol A and coprostanols were detected only in some sediment samples from the stream. The highest concentration of nonylphenol was determined in stream sample, and concentrations of nonylphenol in the inner part of Gwangyang Bay were higher than those in the out part. Nonylphenol concentrations in the surface seawater and surface sediment samples ranged from 4.0 to 74.0 ng l$\^$-1/ and from 3.1 to 74.3 ng g$\^$-1/ dry wt., respectively. Partition coefficient (LogK$\_$oc/) of nonylphenol between sediment and water was 4.8. Nonylphenol nnd dihydrocholesteol concentrations in the stream surface sediment samples ranged from 4.6 to 808.6 and from 78.4 to 1133.6 ng g$\^$-1/ dry wt., respectively. Relatively high concentrations of nonylphenol were found in the stream samples which aye flowing through industrial complex area, while dihydrocholesterol concentration was relatively high in the stream samples which are flowing through only municipal area. Seaward decreasing tyend in nonylphenol concentration was observed from the Seomjin River estuary to the Gwanyang Bay. Such trend was best supported by the strong correlation between nonylphenol concentration and salinity in water samples.

Characteristics of Plant Distribution in the Reclaimed Dredging Area in Gwangyang Bay, Korea

  • Nam, Woong;Kwak, Young-Se;Lee, Deok-Beom;Lee, Sang-Suk
    • Journal of Ecology and Environment
    • /
    • v.32 no.2
    • /
    • pp.115-121
    • /
    • 2009
  • In order to elucidate the mechanisms affecting plant distributions in the reclaimed dredging area in the Gwangyang steelworks, in the Gwangyang Bay, Korea, we examined soil characteristics and plant distributions in four study sites and a control site in the study area. Desalination occurring along a gradient with increasing elevation, resulting in decrease of soil pH, EC, P, K, Cl, Ca, Mg, and salt and an increase in soil T-N, silt, clay contents. From site 1 (the lowest-elevation site) to site 5 (the highest-elevation site), halophytes decreased in abundance and nonhalophytes increased. The dominant species in each site were: Phragmites communis, Limonium tetragonum, and 12 additional species at site 1, Carex pumila, Suaeda japonica, and 15 additional species at site 2, Spergularia marina, Scirpus planiculmis, and 22 additional species at site 3, Miscantus sinensis, Lespedeza bicolor, and 26 additional species at site 4 and Pinus thunberii, Rhododendron mucronulatum, and 39 additional species at site 5, which resembled a naturally-occurring P. thinbergii community. Cluster analysis of the vegetation data matrix grouped the 35 plots into 5 major groups, and cluster analysis using the soil environment data matrix revealed 4 major groups. CCA of the floristic and environmental data matrix showed a positive relationship of SAR, EC, Na, Cl, and Ca, which are related to salt, in the $1^{st}$ axis and $2^{nd}$ axis, but negative relationships for altitude, organic contents, silt, and clay contents. Notably, plant species in the reclaimed dredging area that were separated along the $1^{st}$ axis showed strong relationships with factors that related to salt. Long-term exposure to natural rainfall in the reclaimed dredging area changed the soil characteristics, such as salinity. This change in soil characteristics might alter the SAR, which affects plant survival strategies in a given habitat. These results strongly indicated that factors related to salt and elevation play important roles in determining the overall plant distribution in the reclaimed dredging area.

Marine Environments and Ecological Characteristics of Phytoplankton in Southern Coastal Waters During June to October in 2004-2006 (2004-2006년 6-10월 동안의 남해중부연안 해역특성 및 식물플랑크톤의 군집생태)

  • Cho, Eun-Seob;Lee, Sang-Yong;Kim, Sang-Soo;Choi, Yoon-Seok
    • Journal of Environmental Science International
    • /
    • v.16 no.8
    • /
    • pp.941-957
    • /
    • 2007
  • This study monitored marine environments and ecological characteristics of phytoplankton in southern coastal waters during June to October in 2004-2006 and provided an information to how Cochlodinium blooms have occurred. A total of sampling sites was 16 (Dukyang bay, Goheung, Yeoja bay, Gamak bay, Gwangyang bay, Yeosu, and Namhae). Temperature ranged from $19^{\circ}C\;to\;29^{\circ}C$, which all of sampling in Yeoja bay was the highest temperature of $27^{\circ}C\;and\;29^{\circ}C$ during summer. On June, July, September, and October did not show a remarkable difference regardless of sampling sites. Yeoja and Gwangyang bays had 25-27 in salinity that was lower approximately 5-6 compared with other sampling sites. Chlorophyll had considerable fluctuations depending on sampling sites on July and October, in particular, Gwangyang bay was the highest value of $15{\mu}gl^{-1}$ that had five times as much as. Unlikely to temperature, salinity, and chlorophyll, transparency ranged from 2 m to 5 m regardless of sampling sites. Gwangyang bay was the highest DIN (Dissolved Inorganic Nitrogen) of $0.53mgl^{-1}$ on July and August that had ten times as much as, whereas DIP (Dissolved Inorganic Phosphorus) did not show a significant difference between sampling sites. On July, the correlation of DIN and chlorophyll was a negative that should extremely require DIN to grow phytoplankton, but was a positive liner on August. Mean cell number of phytoplankton reached to encounter a peak of 500 cells $ml^{-1}$ in July and August, which diatoms were dominant species and attained an abundance of >60% regardless of months. In August, the occurrence of dinoflagellates ranged from 20% to 30%. Skeletonema costatum, one of dominant speicies, was the highest occurrence to throughout sampling sites during 2004 to 2006. On the basis of cluster analysis for phytoplankton, they were distributed in all of sampling sites. Consequently, significant fluctuations of marine environments were shown in summer and S. costatum was regarded as the representive phytoplankton in southern coastal waters. In particular, the outbreaks of Cochlodinium polykrikoides have occurred in Dukyang bay, Gamak bay, Goheung, Yeosu, and Namhae, but Yeoja and Gwangyang bays did not occur. The distinguish characteristics of occurring sampling sites and non-occurring in Cochlodinium blooms based on this study was DIN that was enough to persistently grow and maintain them even a litter dissolved in water. This suggests that Cochlodinium red tide seems to be occur in off waters.

Spatial and Temporal Distribution of Zooplankton in Gwangyang and Sachon Bay, Korea

  • Kim Saywa
    • Korean Journal of Environmental Biology
    • /
    • v.23 no.2 s.58
    • /
    • pp.93-97
    • /
    • 2005
  • Zooplankton dynamics were investigated based on samples collected monthly during the period between November 1998 and October 1999 at 15 stations in Gwangyang and Sachon Bay. Zooplankters were quantitatively collected with horizontal towing through the surface and oblique hauling from the bottom to surface at each station, simultaneously. A total of 88 taxa of zooplankton were distributed and 60 taxa were identified to species. Copepods showed the prosperity in species number of 52 species. Number of taxa occurred in samples hauled obliquely always showed $2\~5$ more species than those captured in the surface except for stations near the Namhae bridge. In waters near Namhae bridge, fast current seemed to mix waters vertically. Seasonally these differences were more distinct in the spring and summer than those in other seasons possibly due to the stratification in warmer seasons. In quantitative aspects, differences between two layers seemed to be obscure. Spatial and temporal variations in species diversity of copepods showed more prosperity in pelagic realm than those in the surface. Our collection carrying out in day time might be one of the important reason to cause these differences in zooplankton dynamics between two layers.

Mass Balance of Perfluorooctane sulfonates in a Semi-enclosed Bay, Korea

  • Heo, Min Ji;Roh, Kyong Joon;Kim, Dong-Myung
    • Journal of Environmental Science International
    • /
    • v.29 no.10
    • /
    • pp.969-979
    • /
    • 2020
  • A numerical simulation was conducted on perfluorooctane sulfonate (PFOS) in the Gwangyang Bay using a multi-box model to estimate the transport of organic chemicals in the coastal environment. The results of the sensitivity analysis on dissolved PFOS and PFOS in Particulate Organic Carbon (POC) indicate that they were most significantly influenced by the adsorption rate, desorption rate, and sinking velocity coefficients. PFOS in phytoplankton was found to be sensitive to bio-concentration and the excretion rate. The results of the mass balance indicate that the standing stocks of PFOS in water, POC, and phytoplankton are 345.55 g, 63.76 g, and 0.11 g, respectively, in the inner part and 149.90 g, 27.51 g, and 0.05 g, respectively, in the outer part. Considering flux in the inner part, adsorption to POC had the highest value among transition paths. The next highest were desorption, outflow to the outer part, and inflow to the inner part. Outflow into the open sea was found to have the highest value for the outer part.

Sedimentary Emvironments of the Gwangyang Bay, Southern Coast of Korea (光陽灣의 堆積環境에 관한 硏究)

  • Park, Yong Ahn;Lee, Chang-Bok;Choi, Jin Hyuk
    • 한국해양학회지
    • /
    • v.19 no.1
    • /
    • pp.82-88
    • /
    • 1984
  • The Gwangyang Bay, southern coast of Korea, is characterized by its semi-enclosed basin morphology and mesotidal regime. The Seomjin River, in particular, has a complex delta depositional system at its mouth, which has approximately 44$\textrm{km}^2$ in the total surface area. Various sedimentary environments, such as delta, intertidal flat, subtidal zone and major tidal channels are recognized based on sediment facies and depositional regime. However, the essential intertidal flat environments are developed mainly in the western parts of the bay which is generally low in energy, i, e. tidal current and wave action.

  • PDF