• Title/Summary/Keyword: Gut-brain axis

Search Result 37, Processing Time 0.026 seconds

Gut-Brain Connection: Microbiome, Gut Barrier, and Environmental Sensors

  • Min-Gyu Gwak;Sun-Young Chang
    • IMMUNE NETWORK
    • /
    • v.21 no.3
    • /
    • pp.20.1-20.18
    • /
    • 2021
  • The gut is an important organ with digestive and immune regulatory function which consistently harbors microbiome ecosystem. The gut microbiome cooperates with the host to regulate the development and function of the immune, metabolic, and nervous systems. It can influence disease processes in the gut as well as extra-intestinal organs, including the brain. The gut closely connects with the central nervous system through dynamic bidirectional communication along the gut-brain axis. The connection between gut environment and brain may affect host mood and behaviors. Disruptions in microbial communities have been implicated in several neurological disorders. A link between the gut microbiota and the brain has long been described, but recent studies have started to reveal the underlying mechanism of the impact of the gut microbiota and gut barrier integrity on the brain and behavior. Here, we summarized the gut barrier environment and the 4 main gut-brain axis pathways. We focused on the important function of gut barrier on neurological diseases such as stress responses and ischemic stroke. Finally, we described the impact of representative environmental sensors generated by gut bacteria on acute neurological disease via the gut-brain axis.

Diet-Induced Gut Dysbiosis and Leaky Gut Syndrome

  • Yu-Rim Chae;Yu Ra Lee;Young-Soo Kim;Ho-Young Park
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.747-756
    • /
    • 2024
  • Chronic gut inflammation promotes the development of metabolic diseases such as obesity. There is growing evidence which suggests that dysbiosis in gut microbiota and metabolites disrupt the integrity of the intestinal barrier and significantly impact the level of inflammation in various tissues, including the liver and adipose tissues. Moreover, dietary sources are connected to the development of leaky gut syndrome through their interaction with the gut microbiota. This review examines the effects of these factors on intestinal microorganisms and the communication pathways between the gut-liver and gut-brain axis. The consumption of diets rich in fats and carbohydrates has been found to weaken the adherence of tight junction proteins in the gastrointestinal tract. Consequently, this allows endotoxins, such as lipopolysaccharides produced by detrimental bacteria, to permeate through portal veins, leading to metabolic endotoxemia and alterations in the gut microbiome composition with reduced production of metabolites, such as short-chain fatty acids. However, the precise correlation between gut microbiota and alternative sweeteners remains uncertain, necessitating further investigation. This study highlights the significance of exploring the impact of diet on gut microbiota and the underlying mechanisms in the gut-liver and gut-brain axis. Nevertheless, limited research on the gut-liver axis poses challenges in comprehending the intricate connections between diet and the gut-brain axis. This underscores the need for comprehensive studies to elucidate the intricate gut-brain mechanisms underlying intestinal health and microbiota.

Autism Spectrum Disorder and Eating Problems: The Imbalance of Gut Microbiota and the Gut-Brain Axis Hypothesis

  • Jiyoung Kim
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.35 no.1
    • /
    • pp.51-56
    • /
    • 2024
  • This review explores the complexities of autism spectrum disorder (ASD), primarily focusing on the significant eating challenges faced by children and adolescents with this neurodevelopmental condition. It is common for individuals with ASD to exhibit heightened sensitivity to various sensory aspects of food such as taste, texture, smell, and visual appeal, leading to restricted and less diverse diets. These dietary limitations are believed to contribute to an imbalance in the gut microbiota. This review elaborates on how these eating problems, coupled with the distinctive characteristics of ASD, might be influenced by and, in turn, influence the gut-brain axis, a bidirectional communication system between the gastrointestinal tract and the brain. This discussion aims to shed light on the multifaceted interactions and potential implications of diet, gut health, and neurological development and function in children and adolescents with ASD.

Effect of Lactobacillus dominance modified by Korean Red Ginseng on the improvement of Alzheimer's disease in mice

  • Lee, Mijung;Lee, So-Hee;Kim, Min-Soo;Ahn, Kwang-Sung;Kim, Manho
    • Journal of Ginseng Research
    • /
    • v.46 no.3
    • /
    • pp.464-472
    • /
    • 2022
  • Background: Gut microbiota influence the central nervous system through gut-brain-axis. They also affect the neurological disorders. Gut microbiota differs in patients with Alzheimer's disease (AD), as a potential factor that leads to progression of AD. Oral intake of Korean Red Ginseng (KRG) improves the cognitive functions. Therefore, it can be proposed that KRG affect the microbiota on the gut-brain-axis to the brain. Methods: Tg2576 were used for the experimental model of AD. They were divided into four groups: wild type (n = 6), AD mice (n = 6), AD mice with 30 mg/kg/day (n = 6) or 100 mg/kg/day (n = 6) of KRG. Following two weeks, changes in gut microbiota were analyzed by Illumina HiSeq4000 platform 16S gene sequencing. Microglial activation were evaluated by quantitative Western blot analyses of Iba-1 protein. Claudin-5, occludin, laminin and CD13 assay were conducted for Blood-brain barrier (BBB) integrity. Amyloid beta (Aβ) accumulation demonstrated through Aβ 42/40 ratio was accessed by ELISA, and cognition were monitored by Novel object location test. Results: KRG improved the cognitive behavior of mice (30 mg/kg/day p < 0.05; 100 mg/kg/day p < 0.01), and decreased Aβ 42/40 ratio (p < 0.01) indicating reduced Aβ accumulation. Increased Iba-1 (p < 0.001) for reduced microglial activation, and upregulation of Claudin-5 (p < 0.05) for decreased BBB permeability were shown. In particular, diversity of gut microbiota was altered (30 mg/kg/day q-value<0.05), showing increased population of Lactobacillus species. (30 mg/kg/day 411%; 100 mg/kg/day 1040%). Conclusions: KRG administration showed the Lactobacillus dominance in the gut microbiota. Improvement of AD pathology by KRG can be medicated through gut-brain axis in mice model of AD.

Gut Microbiota Metabolite Messengers in Brain Function and Pathology at a View of Cell Type-Based Receptor and Enzyme Reaction

  • Bada Lee;Soo Min Lee;Jae Won Song;Jin Woo Choi
    • Biomolecules & Therapeutics
    • /
    • v.32 no.4
    • /
    • pp.403-423
    • /
    • 2024
  • The human gastrointestinal (GI) tract houses a diverse microbial community, known as the gut microbiome comprising bacteria, viruses, fungi, and protozoa. The gut microbiome plays a crucial role in maintaining the body's equilibrium and has recently been discovered to influence the functioning of the central nervous system (CNS). The communication between the nervous system and the GI tract occurs through a two-way network called the gut-brain axis. The nervous system and the GI tract can modulate each other through activated neuronal cells, the immune system, and metabolites produced by the gut microbiome. Extensive research both in preclinical and clinical realms, has highlighted the complex relationship between the gut and diseases associated with the CNS, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. This review aims to delineate receptor and target enzymes linked with gut microbiota metabolites and explore their specific roles within the brain, particularly their impact on CNS-related diseases.

Potential role of phytochemicals in brain plasticity: Focus on polyunsaturated fatty acids

  • Yook, Jang Soo;Lee, Minchul
    • Korean Journal of Exercise Nutrition
    • /
    • v.24 no.1
    • /
    • pp.14-18
    • /
    • 2020
  • [Purpose] Functional foods are thought to strongly influence the structure and function of the brain. Previous studies have reported that brain-boosting diets may enhance neuroprotective functions. Certain foods are particularly rich in nutrients like phytochemicals that are known to support brain plasticity; such foods are commonly referred to as brain foods. [Methods] In this review, we briefly explore the scientific evidence supporting the neuroprotective activity of a number of phytochemicals with a focus on phenols and polyunsaturated fatty acids such as flavonoid, olive oil, and omega-3 fatty acid. [Results] The aim of this study was to systematically examine the primary issues related to phytochemicals in the brain. These include (a) the brain-gut-microbiome axis; (b) the effects of phytochemicals on gut microbiome and their potential role in brain plasticity; (c) the role of polyunsaturated fatty acids in brain health; and (d) the effects of nutrition and exercise on brain function. [Conclusion] This review provides evidence supporting the view that phytochemicals from medicinal plants play a vital role in maintaining brain plasticity by influencing the brain-gut-microbiome axis. The consumption of brain foods may have neuroprotective effects, thus protecting against neurodegenerative disorders and promoting brain health.

Using Synbiotics as a Therapy to Protect Mental Health in Alzheimer's Disease

  • Anh Pham Thi Ngoc;Adil Zahoor;Dong Gyun Kim;Seung Hwan Yang
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.9
    • /
    • pp.1739-1747
    • /
    • 2024
  • Alzheimer's disease (AD) is a progressive neurological disorder that represents a major cause of dementia worldwide. Its pathogenesis involves multiple pathways, including the amyloid cascade, tau protein, oxidative stress, and metal ion dysregulation. Recent studies have suggested a critical link between changes in gut microbial diversity and the disruption of the gut-brain axis in AD. Previous studies primarily explored the potential benefits of probiotics and prebiotics in managing AD. However, studies have yet to fully describe a novel promising approach involving the use of synbiotics, which include a combination of active probiotics and new-generation prebiotics. Synbiotics show potential for mitigating the onset and progression of AD, thereby offering a holistic approach to address the multifaceted nature of AD. This review article primarily aims to gain further insights into the mechanisms of AD, specifically the intricate interaction between gut bacteria and the brain via the gut-brain axis. By understanding this relationship, we can identify potential targets for intervention and therapeutic strategies to combat AD effectively. This review also discusses substantial evidence supporting the role of synbiotics as a promising AD treatment that surpasses traditional probiotic or prebiotic interventions. We find that synbiotics may be used not only to address cognitive decline but also to reduce AD-related psychological burden, thus enhancing the overall quality of life of patients with AD.

Alteration of Gut Microbiota in Autism Spectrum Disorder: An Overview

  • Oh, Donghun;Cheon, Keun-Ah
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.31 no.3
    • /
    • pp.131-145
    • /
    • 2020
  • The microbiota-gut-brain axis, which refers to the bidirectional communication pathway between gut bacteria and the central nervous system, has a profound effect on important brain processes, from the synthesis of neurotransmitters to the modulation of complex behaviors such as sociability and anxiety. Previous studies have revealed that the gut microbiota is potentially related to not only gastrointestinal disturbances, but also social impairment and repetitive behavior-core symptoms of autism spectrum disorder (ASD). Although studies have been conducted to characterize the microbial composition in patients with ASD, the results are heterogeneous. Nevertheless, it is clear that there is a difference in the composition of the gut microbiota between ASD and typically developed individuals, and animal studies have repeatedly suggested that the gut microbiota plays an important role in ASD pathophysiology. This possibility is supported by abnormalities in metabolites produced by the gut microbiota and the association between altered immune responses and the gut microbiota observed in ASD patients. Based on these findings, various attempts have been made to use the microbiota in ASD treatment. The results reported to date suggest that microbiota-based therapies may be effective for ASD, but largescale, well-designed studies are needed to confirm this.

Effects of red ginseng on gut, microbiota, and brain in a mouse model of post-infectious irritable bowel syndrome

  • Yu, Seonhye;Chun, Eunho;Ji, Yeounjung;Lee, Young Joo;Jin, Mirim
    • Journal of Ginseng Research
    • /
    • v.45 no.6
    • /
    • pp.706-716
    • /
    • 2021
  • Background: Irritable bowel syndrome (IBS), the most common functional gastrointestinal disorder, is characterized by chronic abdominal pain and bowel habit changes. Although diverse complicated etiologies are involved in its pathogenesis, a dysregulated gut-brain axis may be an important factor. Red ginseng (RG), a traditional herbal medicine, is proven to have anti-inflammatory effects and improve brain function; however, these effects have not been investigated in IBS. Methods: Three-day intracolonic zymosan injections were used to induce post-infectious human IBS-like symptoms in mice. The animals were randomized to receive either phosphate-buffered saline (CG) or RG (30/100/300 mg/kg) for 10 days. Amitriptyline and sulfasalazine were used as positive controls. Macroscopic scoring was performed on day 4. Visceral pain and anxiety-like behaviors were assessed by colorectal distension and elevated plus maze and open field tests, respectively, on day 10. Next-generation sequencing of gut microbiota was performed, and biomarkers involved in gut-brain axis responses were analyzed. Results: Compared to CG, RG significantly decreased the macroscopic score, frequency of visceral pain, and anxiety-like behavior in the IBS mice. These effects were comparable to those after sulfasalazine and amitriptyline treatments. Moreover, RG significantly increased the proliferation of beneficial microbes, including Lactobacillus johnsonii, Lactobacillus reuteri, and Parabacteroides goldsteinii. RG significantly suppressed expression of IL-1β and c-fos in the gut and prefrontal cortex, respectively. Further, it restored the plasma levels of corticosterone to within the normal range, accompanied by an increase in adrenocorticotropic hormone. Conclusion: RG may be a potential therapeutic option for the management of human IBS.

Effect of Duloxetine in Functional Gastrointestinal Disorder : In the Perspective of 'Brain-Gut Axis' (기능성 위장관 장애에서 Duloxetine의 효과 : '뇌-장관 축' 모델을 중심으로)

  • Lee, Sang-Shin;Park, Si-Sung
    • Korean Journal of Psychosomatic Medicine
    • /
    • v.20 no.2
    • /
    • pp.135-138
    • /
    • 2012
  • The pathophysiology of functional gastrointestinal disorder(FGID) is not completely understood, but the importance of the 'Brain-Gut Axis(BGA)' model in FGID is being increasingly recognized. The BGA model is a bidirectional, hard-wired and homeostatic relationship between the central nervous system(CNS) and the enteric nervous system(ENS) via neural, neurohormonal and neuroimmunological pathways. In addition, the BGA model would provide a rationale for the use of psychotropics on FGID. The authors experienced two cases in which duloxetine, a serotonin-norepinephrine reuptake inhibitor, was effective in relieving FGID symptoms as well as psychiatric symptoms such as depression and hypochondriacal anxiety. Therefore we discuss the vignettes from the perspective of BGA theory. Duloxetine showed efficacy in these two patients by reducing visceral hypersensivity (bottom-up regulation) and by relieving depression and anxiety(top-down regulation).

  • PDF