• Title/Summary/Keyword: Gut microbiome

Search Result 144, Processing Time 0.027 seconds

Enhanced pig production: potential use of insect gut microbiota for pig production

  • Shin, Jiwon;Kim, Bo-Ra;Guevarra, Robin B.;Lee, Jun Hyung;Lee, Sun Hee;Kim, Young Hwa;Wattanaphansak, Suphot;Kang, Bit Na;Kim, Hyeun Bum
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.4
    • /
    • pp.655-663
    • /
    • 2018
  • The insect gut microbiome is known to have important roles in host growth, development, digestion, and resistance against pathogens. In addition, the genetic diversity of the insect gut microbiota has recently been recognized as potential genetic resources for industrial bioprocessing. However, there is limited information regarding the insect gut microbiota to better help us understand their potential benefits for enhanced pig production. With the development of next-generation sequencing methods, whole genome sequence analysis has become possible beyond traditional culture-independent methods. This improvement makes it possible to identify and characterize bacteria that are not cultured and located in various environments including the gastrointestinal tract. Insect intestinal microorganisms are known to have an important role in host growth, digestion, and immunity. These gut microbiota have recently been recognized as potential genetic resources for livestock farming which is using the functions of living organisms to integrate them into animal science. The purpose of this literature review is to emphasize the necessity of research on insect gut microbiota and their applicability to pig production or bioindustry. In conclusion, bacterial metabolism of feed in the gut is often significant for the nutrition intake of animals, and the insect gut microbiome has potential to be used as feed additives for enhanced pig performance. The exploration of the structure and function of the insect gut microbiota needs further investigation for their potential use in the swine industry particularly for the improvement of growth performance and overall health status of pigs.

Potential Prebiotic Properties of Whey Protein and Glycomacropeptide in Gut Microbiome

  • Bryna Rackerby;Hoang Ngoc M. Le;Avery Haymowicz;David C. Dallas;Si Hong Park
    • Food Science of Animal Resources
    • /
    • v.44 no.2
    • /
    • pp.299-308
    • /
    • 2024
  • Proteins in whey have prebiotic and antimicrobial properties. Whey protein comprises numerous bioactive proteins and peptides, including glycomacropeptide (GMP), a hydrophilic casein peptide that separates with the whey fraction during cheese making. GMP has traditionally been used as a protein source for individuals with phenylketonuria and also has prebiotic (supporting the growth of Bifidobacterium and lactic acid bacteria) and antimicrobial activities. GMP supplementation may help positively modulate the gut microbiome, help treat dysbiosis-related gastrointestinal disorders and improve overall health in consumers.

Postbiotics Enhance NK Cell Activation in Stress-Induced Mice through Gut Microbiome Regulation

  • Jung, Ye-Jin;Kim, Hyun-Seok;Jaygal, Gunn;Cho, Hye-Rin;Lee, Kyung bae;Song, In-bong;Kim, Jong-Hoon;Kwak, Mi-Sun;Han, Kyung-Ho;Bae, Min-Jung;Sung, Moon-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.5
    • /
    • pp.612-620
    • /
    • 2022
  • Recent studies have revealed that probiotics and their metabolites are present under various conditions; however, the role of probiotic metabolites (i.e., postbiotics in pathological states) is controversial. Natural killer (NK) cells play a key role in innate and adaptive immunity. In this study, we examined NK cell activation influenced by a postbiotics mixture in response to gut microbiome modulation in stress-induced mice. In vivo activation of NK cells increased in the postbiotics mixture treatment group in accordance with Th1/Th2 expression level. Meanwhile, the Red Ginseng treatment group, a reference group, showed very little expression of NK cell activation. Moreover, the postbiotics mixture treatment group in particular changed the gut microbiome composition. Although the exact role of the postbiotics mixture in regulating the immune system of stress-induced mice remains unclear, the postbiotics mixture-induced NK cell activation might have affected gut microbiome modulation.

The Gut-Heart Axis: Updated Review for The Roles of Microbiome in Cardiovascular Health

  • Thi Van Anh Bui;Hyesoo Hwangbo;Yimin Lai;Seok Beom Hong;Yeon-Jik Choi;Hun-Jun Park;Kiwon Ban
    • Korean Circulation Journal
    • /
    • v.53 no.8
    • /
    • pp.499-518
    • /
    • 2023
  • Cardiovascular diseases (CVDs), including coronary artery disease, stroke, heart failure, and hypertension, are the global leading causes of death, accounting for more than 30% of deaths worldwide. Although the risk factors of CVDs have been well understood and various treatment and preventive measures have been established, the mortality rate and the financial burden of CVDs are expected to grow exponentially over time due to the changes in lifestyles and increasing life expectancies of the present generation. Recent advancements in metagenomics and metabolomics analysis have identified gut microbiome and its associated metabolites as potential risk factors for CVDs, suggesting the possibility of developing more effective novel therapeutic strategies against CVD. In addition, increasing evidence has demonstrated the alterations in the ratio of Firmicutes to Bacteroidetes and the imbalance of microbial-dependent metabolites, including short-chain fatty acids and trimethylamine N-oxide, play a crucial role in the pathogenesis of CVD. However, the exact mechanism of action remains undefined to this day. In this review, we focus on the compositional changes in the gut microbiome and its related metabolites in various CVDs. Moreover, the potential treatment and preventive strategies targeting the gut microbiome and its metabolites are discussed.

Gut Microbiome Alterations and Functional Prediction in Chronic Spontaneous Urticaria Patients

  • Zhang, Xinyue;Zhang, Jun;Chu, Zhaowei;Shi, Linjing;Geng, Songmei;Guo, Kun
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.5
    • /
    • pp.747-755
    • /
    • 2021
  • The effects of the gut microbiome on both allergy and autoimmunity in dermatological diseases have been indicated in several recent studies. Chronic spontaneous urticaria (CSU) is a disease involving allergy and autoimmunity, and there is no report detailing the role of microbiota alterations in its development. This study was performed to identify the fecal microbial composition of CSU patients and investigate the different compositions and potential genetic functions on the fecal microbiota between CSU patients and normal controls. The gut microbiota of CSU patients and healthy individuals were obtained by 16s rRNA massive sequencing. Gut microbiota diversity and composition were compared, and bioinformatics analysis of the differences was performed. The gut microbiota composition results showed that Firmicutes, Bacteroidetes, Proteobacteria, and Verrucomicrobia were dominant microbiota in CSU patients. The differential analysis showed that relative abundance of the Proteobacteria (p = 0.03), Bacilli (p = 0.04), Enterobacterales (p = 0.03), Enterobacteriaceae (p = 0.03) was significantly increased in CSU patients. In contrast, the relative abundance of Megamonas, Megasphaera, and Dialister (all p < 0.05) in these patients significantly decreased compared with healthy controls. The different microbiological compositions impacted normal gastrointestinal functions based on function prediction, resulting in abnormal pathways, including transport and metabolism. We found CSU patients exhibited gut microbiota dysbiosis compared with healthy controls. Our results indicated CSU is associated with gut microbiota dysbiosis and pointed out that the bacterial taxa increased in CSU patients, which might be involved in the pathogenesis of CSU. These results provided clues for future microbial-based therapies on CSU.

Current Status and Future Promise of the Human Microbiome

  • Kim, Bong-Soo;Jeon, Yoon-Seong;Chun, Jongsik
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.16 no.2
    • /
    • pp.71-79
    • /
    • 2013
  • The human-associated microbiota is diverse, varies between individuals and body sites, and is important in human health. Microbes in human body play an essential role in immunity, health, and disease. The human microbiome has been studies using the advances of next-generation sequencing and its metagenomic applications. This has allowed investigation of the microbial composition in the human body, and identification of the functional genes expressed by this microbial community. The gut microbes have been found to be the most diverse and constitute the densest cell number in the human microbiota; thus, it has been studied more than other sites. Early results have indicated that the imbalances in gut microbiota are related to numerous disorders, such as inflammatory bowel disease, colorectal cancer, diabetes, and atopy. Clinical therapy involving modulating of the microbiota, such as fecal transplantation, has been applied, and its effects investigated in some diseases. Human microbiome studies form part of human genome projects, and understanding gleaned from studies increase the possibility of various applications including personalized medicine.

Bacterial Growth Modulatory Effects of Two Branched-Chain Hydroxy Acids and Their Production Level by Gut Microbiota

  • Chan Hyuk Hwang;Su-Hyun Kim;Choong Hwan Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.6
    • /
    • pp.1314-1321
    • /
    • 2024
  • Branched-chain hydroxy acids (BCHAs), produced by lactic acid bacteria, have recently been suggested as bioactive compounds contributing to the systemic metabolism and modulation of the gut microbiome. However, the relationship between BCHAs and gut microbiome remains unclear. In this study, we investigated the effects of BCHAs on the growth of seven different families in the gut microbiota. Based on in vitro screening, both 2-hydroxyisovaleric acid (HIVA) and 2-hydroxyisocaproic acid (HICA) stimulated the growth of Lactobacillaceae and Bifidobacteriaceae, with HIVA showing a significant growth promotion. Additionally, we observed not only the growth promotion of probiotic Lactobacillaceae strains but also growth inhibition of pathogenic B. fragilis in a dose-dependent manner. The production of HIVA and HICA varied depending on the family of the gut microbiota and was relatively high in case of Lactobacillaceae and Lachnosporaceae. Furthermore, HIVA and HICA production by each strain positively correlated with their growth variation. These results demonstrated gut microbiota-derived BCHAs as active metabolites that have bacterial growth modulatory effects. We suggest that BCHAs can be utilized as active metabolites, potentially contributing to the treatment of diseases associated with gut dysbiosis.

Comparative analysis of the pig gut microbiome associated with the pig growth performance

  • Jun Hyung Lee;San Kim;Eun Sol Kim;Gi Beom Keum;Hyunok Doo;Jinok Kwak;Sriniwas Pandey;Jae Hyoung Cho;Sumin Ryu;Minho Song;Jin Ho Cho;Sheena Kim;Hyeun Bum Kim
    • Journal of Animal Science and Technology
    • /
    • v.65 no.4
    • /
    • pp.856-864
    • /
    • 2023
  • There are a variety of microorganisms in the animal intestine, and it has been known that they play important roles in the host such as suppression of potentially pathogenic microorganisms, modulation of the gut immunity. In addition, the gut microbiota and the livestock growth performance have long been known to be related. Therefore, we evaluated the interrelation between the growth performance and the gut microbiome of the pigs from 3 different farms, with pigs of varied ages ready to be supplied to the market. When pigs reached average market weight of 118 kg, the average age of pigs in three different farms were < 180 days, about 190 days, and > 200 days, respectively. Fecal samples were collected from pigs of age of 70 days, 100 days, 130 days, and 160 days. The output data of the 16S rRNA gene sequencing by the Illumina Miseq platform was filtered and analyzed using Quantitative Insights into Microbial Ecology (QIIME)2, and the statistical analysis was performed using Statistical Analysis of Metagenomic Profiles (STAMP). The results of this study showed that the gut microbial communities shifted as pigs aged along with significant difference in the relative abundance of different phyla and genera in different age groups of pigs from each farm. Even though, there was no statistical differences among groups in terms of Chao1, the number of observed operational taxonomic units (OTUs), and the Shannon index, our results showed higher abundances of Bifidobacterium, Clostridium and Lactobacillus in the feces of pigs with rapid growth rate. These results will help us to elucidate important gut microbiota that can affect the growth performance of pigs.

Effects of Season Differences on the Cecal Microbiome of Broiler at Conventional Farms and Welfare System Farms (계절에 따른 일반 농가와 복지 농가 육계의 맹장 내 미생물 균총에 미치는 영향)

  • Junsik Kim;Seol Hwa Park;Minji Kim;Seong Hoon Shim;Hwan Ku Kang;Jin Young Jeong
    • Korean Journal of Poultry Science
    • /
    • v.51 no.2
    • /
    • pp.73-82
    • /
    • 2024
  • The gut microbiome of broilers is a critical factor in overall health and productivity. However, high summer temperatures and high stocking density (conventional farm condition) may cause stress to broilers, resulting in an imbalance in the gut microbiome. This study was conducted to compare the gut microbiome of broilers between spring and summer in welfare (Bosung, Jeollanam-do, South Korea) and conventional farms (Jangsu, Jeollabuk-do, South Korea). A total of 31 broilers were assigned to the following groups: conventional farm in spring (n = 8); conventional farm in summer (n = 8); welfare farm in spring (n = 7); welfare farm in summer (n = 8). Cecal digesta were collected from eight broilers from each farm, and microbiome analysis was performed using 16S rRNA gene sequencing. Beta diversity analysis indicated clear differences in cecal microbiome composition between spring and summerin both welfare and conventional farm. At the phylum level, analysis of conventional farm revealed a higher proportion of Bacteroidetes in spring than in summer. At the genus level, broilers exhibited a higher abundance of Bacteroides and Alistipesin spring compared to summer. In contrast, the difference in microbial flora composition observed in welfare farm was relatively small compared to conventional farm. In conclusion, the results of this study suggest that heat stress can negatively affect the caecum microbiome of broilers. However, improvements in the housing environment can mitigate the effects of heat stress.

Changes in Gut Microbial Community of Pig Feces in Response to Different Dietary Animal Protein Media

  • Jeong, Yujeong;Park, Jongbin;Kim, Eun Bae
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.9
    • /
    • pp.1321-1334
    • /
    • 2020
  • Beef, pork, chicken and milk are considered representative protein sources in the human diet. Since the digestion of protein is important, the role of intestinal microflora is also important. Despite this, the pure effects of meat and milk intake on the microbiome are yet to be fully elucidated. To evaluate the effect of beef, pork, chicken and milk on intestinal microflora, we observed changes in the microbiome in response to different types of dietary animal proteins in vitro. Feces were collected from five 6-week-old pigs. The suspensions were pooled and inoculated into four different media containing beef, pork, chicken, or skim milk powder in distilled water. Changes in microbial communities were analyzed using 16S rRNA sequencing. The feces alone had the highest microbial alpha diversity. Among the treatment groups, beef showed the highest microbial diversity, followed by pork, chicken, and milk. The three dominant phyla were Proteobacteria, Firmicutes, and Bacteroidetes in all the groups. The most abundant genera in beef, pork, and chicken were Rummeliibacillus, Clostridium, and Phascolarctobacterium, whereas milk was enriched with Streptococcus, Lactobacillus, and Enterococcus. Aerobic bacteria decreased while anaerobic and facultative anaerobic bacteria increased in protein-rich nutrients. Functional gene groups were found to be over-represented in protein-rich nutrients. Our results provide baseline information for understanding the roles of dietary animal proteins in reshaping the gut microbiome. Furthermore, growth-promotion by specific species/genus may be used as a cultivation tool for uncultured gut microorganisms.