Studies on software plagiarism detection, prevention and judgement have become widespread due to the growing of interest and importance for the protection and authentication of software intellectual property. Many previous studies focused on comparing all pairs of submitted codes by using attribute counting, token pattern, program parse tree, and similarity measuring algorithm. It is important to provide a clear-cut model for distinguishing plagiarism and collaboration. This paper proposes a source code clustering algorithm using a probability model on extreme value distribution. First, we propose an asymmetric distance measure pdist($P_a$, $P_b$) to measure the similarity of $P_a$ and $P_b$ Then, we construct the Plagiarism Direction Graph (PDG) for a given program set using pdist($P_a$, $P_b$) as edge weights. And, we transform the PDG into a Gumbel Distance Graph (GDG) model, since we found that the pdist($P_a$, $P_b$) score distribution is similar to a well-known Gumbel distribution. Second, we newly define pseudo-plagiarism which is a sort of virtual plagiarism forced by a very strong functional requirement in the specification. We conducted experiments with 18 groups of programs (more than 700 source codes) collected from the ICPC (International Collegiate Programming Contest) and KOI (Korean Olympiad for Informatics) programming contests. The experiments showed that most plagiarized codes could be detected with high sensitivity and that our algorithm successfully separated real plagiarism from pseudo plagiarism.
The frequency analysis of annual maximum rainfall data and the derivation of probable rainfall intensity formula at Masan station are performed in this study. Based on the eight different rainfall duration data from 10 minutes to 24 hours, eight types of probability distribution (Gamma, Lognormal, Log-Pearson type III, GEV, Gumbel, Log-Gumbel, Weibull, and Wakeby distributions), three types of parameter estimation scheme (moment, maximum likelihood and probability weighted methods) and three types of goodness-of-fit test (${\chi}^2$, Kolmogorov-Smirnov and Cramer von Mises tests) were considered to find an appropriate probability distribution at Masan station. The Lognormal-2 distribution was selected and the probable rainfall intensity formula was derived by regression analysis. The derived formula can be used for estimating rainfall quantiles of the Masan vicinity areas with convenience and reliability in practice.
This study is concerned with the estimation of wind speeds for return period in cellularized district of Busan by the recent meteorological data. Recently standard of the wind load in Busan area is determined by using meteorological wind speed data which is observed on Automated Synoptic Observing System(ASOS) only. Applying the existing basic wind speed that is 40m/s to the construction design of Busan area is inefficient. Because the wind speeds of Busan area show different amounts depend on the location of cellularized district. This research analyze the observed data of wind speeds of cellularized district in Busan based on Automate Weather System(AWA). In addition that we compute regional wind speeds for return period by using Gumbel distribution and study and compare with the existing basic wind speeds after evaluating appropriateness by Hazen's plot method.
Journal of the Korean Operations Research and Management Science Society
/
v.28
no.4
/
pp.145-153
/
2003
In this Paper, we examine the limiting distributional behaviour of extreme values of mixed Erlang random variables. We show that, in the finite mixture of Erlang distributions, the component distribution with an asymptotically dominant tail has a critical effect on the asymptotic extreme behavior of the mixture distribution and it converges to the Gumbel extreme-value distribution. Normalizing constants are also established. We apply this result to characterize the asymptotic distribution of maxima of sojourn times in M/M/s queuing system. We also show that Erlang mixtures with continuous mixing may converge to the Gumbel or Type II extreme-value distribution depending on their mixing distributions, considering two special cases of uniform mixing and exponential mixing.
Communications for Statistical Applications and Methods
/
v.16
no.4
/
pp.647-658
/
2009
It is already known from the previous study that flood seems to have heavier tail. Therefore, to make prediction of future extreme label, some agreement of tail behavior of extreme data is highly required. The LH-moments estimation method, the generalized form of L-moments is an useful method of characterizing the upper part of the distribution. LH-moments are based on linear combination of higher order statistics. In this study, we have formulated LH-moments of five distributions useful in hydrology such as, two types of three parameter kappa distributions, beta-${\kappa}$ distribution, beta-p distribution and a generalized Gumbel distribution. Using LH-moments reduces the undue influences that small sample may have on the estimation of large return period events.
Journal of Advanced Marine Engineering and Technology
/
v.39
no.8
/
pp.828-832
/
2015
This study is conducted for the evaluation of corrosion and lifetime prediction of fire extinguishing pipelines in residential buildings. The fire extinguishing pipeline is made of carbon steel. Twenty-four samples were selected among all the fire extinguishing pipelines in a building; the selection was based on specimenspositions, pipeline diameters, and pipeline thickness. Analysis was conducted by using the results of visual inspection, electrochemical potentiodynamic anodic polarization test, pitting depth measurements, and extreme value statistics with the Gumbel distribution. The maximum pitting depth and remaining life were statistically predicted using extreme value statistics. During visual inspection, pitting corrosion was observed in several samples. In addition, extreme value statistics demonstrated that there were several pipelines that were very sensitive to pitting corrosion. However, the pitting corrosion was not critical in all the pipelines; thus, it was necessary to change only those pipelines that were severely corroded.
Proceedings of the Korea Water Resources Association Conference
/
2004.05b
/
pp.1098-1102
/
2004
본 연구에서는 수도권을 포함하는 한강하류부에서 가장 중요한 측수지점중 하나인 인도교지점의 연 최대 홍수량 자료에 내해서 빈도해석을 시행하였다. 자료를 3개의 자료(자료 I : $1918\~1940$, 자료 II: $1952\~2002$, 자료 III: 결측치를 제외한 $1918\~2002$)로 구분하였으며, 수문자료에 일반적으로 많이 사용하는 13가지 확률 분포형을 적용하여 매개변수를 추정한 뒤 적합성여부를 판정하였으며, 적합도 검정방법 및 도시적인 방법을 통하여 적정 확률분포형을 선정하였고, 채택된 분포형(gamma-3, GEV, Gumbel, Weibull-2)에 내하여 확률홍수량을 산정하였다. 또한, 위치도시공식(plotting position formula)과 역사적 홍수정보(historic information)를 이용한 빈도해석 결과와도 비교${\cdot}$분석하였다. 그 결과 확률분포형 가운데에는 GEV와 Gumbel 분포형이 인도교지점의 홍수빈도해석에 적합한 것으로 판단된다.
Proceedings of the Korea Water Resources Association Conference
/
2004.05b
/
pp.635-639
/
2004
댐과 같은 구조물의 설계시 큰 강우량에 내한 분포함수의 적합성을 놀일 필요가 있다. 이에 대해 Wang (1997a and b)은 큰 설계량에 내한 적합성을 놀이기 위해 LH 모멘트와 고차 PWM(higher Probability Weighted Moments)방법을 제안하였다. 따라서 본 연구에서는 우리나라의 자 지역별로 대표적인 4개 지점의 일 강우량 자료를 사용하여 제안된 고차 PWM 방법의 적용성을 살펴보았다. 그 과정으로 가장 낮은 차수인 일반적인 PWM 방법과 더 높은 차수의 PWM 방법을 이용하여, GEV(Generalized Extreme Value) 분포와 Gumbel 분포에 대한 매개변수를 추정한 후 이 추정치를 확률지에 실측치와 함께 도시하여 결과를 비교하였다. 그리고 PPCC(Probability Plot Correlation Coefficient) 적합도 검정결과를 통해 추정된 매개변수의 적합성을 확인하였다.
International Journal of Reliability and Applications
/
v.11
no.1
/
pp.41-53
/
2010
In the present paper we develop a mathematical model that facilitates the calculation of reliability of a complex repairable system having three units namely super priority, priority and ordinary. The system is analyzed with the application of Gumbel Hougaard copula when different types of repair possible at a particular state due to deliberate failure. Various reliability measures such as reliability, MTTF and profit function have been evaluated by using supplementary variable and Laplace transform techniques.
Proceedings of the Korea Water Resources Association Conference
/
2015.05a
/
pp.38-38
/
2015
최근 다변량 확률모형을 이용한 빈도해석이 여러 수문분야에 걸쳐 연구되고 있다. 기존 일변량 빈도해석에 비해 변수활용에 대한 자유도와 물리적 현상을 정확하게 표현할 수 있다는 장점이 있으나, 표본자료의 부족, 매개변수 추정 및 적합도 검정 등의 어려움으로 실제 분야에 사용되기 어려운 점이 있다. 본 연구에서는 copula 모형에 대하여 Cramer-von Mises(CVM) 적합도 검정 시 표본자료의 적정 크기를 결정하기 위하여 Peaks-Over-Threshold(POT) 방법을 이용하였다. 서울지점의 기상청 시강우 자료를 이용하여 빈도해석을 수행하였으며, Gumbel copula 모형에 대하여 매개변수 추정은 maximum pseudolikelihood method(MPL) 방법을 이용하였다. 50년의 기록 자료에 대하여 표본크기를 50개부터 2500개까지 조절하여 CVM 통계값과 p-value를 기준으로 적정 표본크기를 산정하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.