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Abstract. In the present paper we develop a mathematical model that facilitates 

the calculation of reliability of a complex repairable system having three units 

namely super priority, priority and ordinary. The system is analyzed with the 

application of Gumbel Hougaard copula when different types of repair possible at 

a particular state due to deliberate failure. Various reliability measures such as 

reliability, MTTF and profit function have been evaluated by using 

supplementary variable and Laplace transform techniques. 
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1. INTRODUCTION 

 

Many researchers have proposed mathematical models for complex repairable 

systems under priority/ non priority extending the common assumption of one type of 

repair between two successive states. (Govil (1974), Gupta and Sharma (1993), Kumar 

and Singh (2008) and Cui and Li (2007)) It has also been observed that opposite to the 

priority units rather little attention has been devoted to repairing of less priority units. One 

of the interesting facts observed now a days are in some cases employees handling the 
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complex system deliberately disturbs it because of their grievances/ annoyance with their 

employer may be due to one reason or the other. In general optimal values of parameters 

of preventive/ corrective maintenance depend on the underlying failure or repair time 

distribution. But when the failure is deliberate, one needs to select the distribution for 

repairing appropriate to the demand. When the situation is mixture of deliberate failure as 

well as less attention to ordinary unit the repair can follow two different type of repair 

between two transition states. Ram and Singh (2008) and Ram and Singh (2009) discuss 

availability and cost analysis of a parallel redundant complex system with two types of 

failure under different repair policies using Gumbel-Hougaard family copula in repair but 

they didn’t analyze the system under super priority which can be a real life possibility. 

Further when a system consists of super priority unit, it may be the case that ordinary unit 

is getting less attentions. Copulas can be of great help to tackle this type of problem. 

(Nelsen (2006)) 

Present work has emerged from the need to find new and efficient ways to deal with 

above mentioned facts. The main aim of the present paper is to show how to evaluate the 

reliability of complex repairable system which consists of three unit namely super priority, 

priority and ordinary. Whenever super priority unit fails, priority unit starts functioning 

and failed unit goes for repairing. If the failed unit repaired before failure of priority unit 

then super priority unit starts functioning and priority unit goes in standby mode. Super 

priority unit will never be in standby mode. If priority unit fails before repairing of super 

priority unit then ordinary unit starts functioning and priority will have to wait for repair. 

The system will be in completely failed state whenever all units fail. The system can also 

be in completely failed state due to deliberate failure. It has been assumed that the 

combination of deliberate failure and less priority to ordinary unit lead to two different 

types of repair. Here different repair facilities are available between adjacent states S8 and 

S0 (where S8 is completely failed state due to deliberate failure and S0 is initial state where 

all units are in good and working condition). The failure and repair times of system follow 

exponential time distribution, however the repairs follow general time distribution except 

at state S8. Gumbel-Hougaard family of Copula has been used in repairing at deliberate 

failure state. The system is studied by supplementary variable technique and Laplace 

transforms. The various measures of reliability have been discussed such as availability, 

state transition probabilities, asymptotic behavior of system and cost analysis. At last 

some particular cases are also taken to highlight the different possibilities. The paper is 

organized as follows: Sections 2, 3, 4 and 5 introduce state description, assumptions, state 

transition diagram of model and notations respectively. Section 6 discusses formulation of 

mathematical model. Sections 7, 8 and 9 contain main results of the paper. 

 

 

2. STATE DESCRIPTION 

 

State State description.  

S0 All units are in good working condition.  

S1  The super priority unit has failed and is under repair. 
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S2 Super priority unit is in operational mode and priority unit is in repairing. 

S3 Super priority unit is under repair, priority unit failed and ordinary unit in 

operational mode. 

S4 All units super priority, priority and ordinary failed.  

S5 Super priority unit failed, priority is operational mode. 

S6 Super priority is in operational mode priority is in standby mode ordinary 

unit is under repairing.  

S7 Super priority unit is in operational mode and priority unit is under repair.  

S8 System completely failed due to deliberate failure.  

 

 

3. ASSUMPTIONS 

 

(1) Initially the system is in good and operational state. 

(2) Failure of super priority, the priority unit starts functioning. 

(3) All failure rates are constant and follow negative exponential distribution. 

(4) Priority in repair is given in the order to super priority, priority and ordinary unit. 

(5) After repair the sub system/unit works like a new, repair never damage anything.  

(6) Repairs follow general time distribution except from S8 to S0.  

(7) Completely failed state S8 repaired by joint probability distribution. 

 

 

4. NOTATIONS 

 

)(tPi  State transition probability i= 0, 1, 2, 3, 4, 5, 4, 6, 7, 8. 

)(sP  Laplace transformation of P(t). 

21,  
Marginal distribution of random variables, where 

)(1 x  and xe2 .
 

Dps  /// 0  Failure rates of super priority / priority / ordinary unit/ 

deliberate failure. 

)(/)(/)( zyx   
Repair rates for super priority/priority/ ordinary unit 

respectively. 

Pi(x, t) 
Probability that the system is in state Si, i =1, 3, 4, 5, 7, super 

priority unit is under repair and elapse repair time is x, t. 

Ep(t) Expected profit during the interval [0, t]. 

K1, K2 Revenue per unit time and service cost per unit time 
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respectively. 

P2(y, t) 
Probability that the system is in state S2,  the  priority unit is 

under repair and elapse repair time is y, t. 

P6(z, t) 
Probability that the system is in state S6,  the ordinary unit is 

under repair elapse repair time is z, t. 

P8 (w, t) 
Probability that the system is in state S8, system is under repair 

and elapse repair time is w, t. 

)(xS  



x

dxx

ex 0

)(

)(


  

)(sS  Laplace transform of )(xS = 



0

)(
0)()( dxexsS

x

dxxsx 

   

 

 

5. STATE TRANSITION DIAGRAM OF MODEL 
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6. FORMULATION OF MATHEMATICAL MODEL 

 

By probability of considerations and continuity arguments we can obtain the 

following set of difference differential equations governing the present mathematical 

model 
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Boundary conditions 
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Initials condition  

1)0(0 P  and other state probabilities are zero at t = 0                                         (18)  

 

Solving the equations (1)-(9) with the help of the equations (10)-(18), one may get 
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The Laplace transformations of the probabilities that the system is in up (i.e. either 

good or degraded state) and failed state at any time are as follows: 
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7. ASYMPTOTIC BEHAVIOR OF SYSTEM 

 

In long run as time s 0  the steady state transition probability can be obtained by 
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8. PARTICULAR CASE 
 

When repair time follows exponential distribution, setting 
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 8.1 Availability 

 

Taking the values of different parameters as λ0=0.4, λp=0.2, λD = 0.1,  λS = 0.3,  η = 1,  

  = 1, 
 
= 1,  θ = 1 and x = 1 then taking inverse Laplace transform, one can obtain 

 
Table 8.1. Time vs. Availability 

Time(t) Pup(t) 

0 1.0000 

1 0.9812 

2 0.9668 

3 0.9602 

4 0.9510 

5 0.9405 

6 0.9294 

7 0.9181 

8 0.9068 

9 0.8956 
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Pup (t) = 0.04194302431 e
 (-2.841820454 t)

 -0.08007794307 e
 (-1.829129280 t) 

+0.08944749140 e
 (-1.687074711 t) - 

0
 
.06704740471 e

 (-1.290474413 t)
 cos (3279153506t) 

- 0.142078437 e
 (-1.290474413 t)

 sin (3279153506t) -0.001177757004 e
 (-1.214136926 t) 

+0.03758082294e
 (-1.204991743 t)

 cos (0.5498088597t)  

+ 0.04801054684e
 (-1.204991743 t)

 sin (0.5498088597t) 

+0.02573091636e
 (-0.6443708433 t)

 +1.002707186e
 (-0.01253547282 t)

                     (41) 

 

8.2 Mean Time to Failure (MTTF) 

 

Taking all repairs to zero for exponential distribution in equation (28) as s tends to zero 

one can obtain the MTTF as: 
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 Setting 2.0,4.0,1.0 0  PD   and varying λs as 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 

0.70, 0.80, 0.90 in (42), one may acquire the variation of MTTF with respect to λs. 

Setting ,1.0,4.0,3.0 0  Ds   and varying λP as 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 

0.80, 0.90 in (42), one may get the variation of MTTF with respect to λP. Again setting 

,1.0,2.0,3.0  DPs  and varying λ0 as 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 

0.90 in (42), which gives the variation of MTTF with respect to λ0. Setting 

4.0,2.0,3.0 0   Ps and varying λD as 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 

0.90 in (42), one may obtain the variation of MTTF with respect to λD. 

The variation of MTTF with respect to different failure rates is shown in Table 8.2. 
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Table 8.2. Failure Rates vs. MTTF 

Failure Rate of 

λs,  λP,  λ0,  λD 

              MTTF with respect to failure rate 

λs λP λ0 λD 

0.10 8.125 10.468 10.750 4.031 

0.20 7.500 7.187 7.375 3.225 

0.30 7.187 6.406 6.750 2.687 

0.40 7.000 6.256 6.531 2.303 

0.50 6.875 6.343 6.430 2.015 

0.60 6.785 6.562 6.375 1.791 

0.70 6.718 6.852 6.342 1.612 

0.80 6.666 7.187 6.320 1.465 

0.90 6.625 7.552 6.305 1.343 
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Figure 8.2. Failure Rates vs. MTTF 

 

8.3 Expected Profit  

 

Let the service facility be always available, then expected profit during the interval [0, 

t] is 

tKdttPKtE
t

upp 2
0

1 )()(       (43) 

Where K1 is the revenue per unit time and K2 is service cost per unit time. 

Using (41), Expected Profit for same set of parameters is given by  
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 (44) 

Setting K1=1 and K2 =0.5, 0.25, 0.15, 0.10, 0.05, 0.02, 0.01 respectively, one get 

Table 8.3. 
 

Table 8.3. Time vs. Expected Profits 

Expected Profits 

Time(t) K2 =0.50  K2=0.25 K2=0.15 K2=0.10 K2=0.05 K2=0.02 K2=0.01 

0 0 0 0 0 0 0 0 

1 0.478 0.728 0.828 0.878 0.928 0.958 0.968 

2 0.947 1.447 1.647 1.746 1.847 1.906 1.927 

3 1.410 2.161 2.460 2.610 2.761 2.850 2.881 

4 1.866 2.866 3.266 3.466 3.667 3.786 3.826 

5 2.312 3.562 4.062 4.312 4.562 4.712 4.762 

6 2.747 4.247 4.847 5.145 5.447 5.627 5.687 

7 3.171 4.921 5.621 5.971 6.321 6.531 6.601 

8 3.583 5.583 6.383 6.783 7.183 7.424 7.503 

9 3.985 6.235 7.135 7.585 8.034 8.305 8.394 
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Figure 8.3. Time vs. Expected Profit  
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9. CONCLUSIONS 

 

Table 8.1 and Figure 8.1 provide information, how availability of the complex 

repairable system changes with respect to time when failure rates are fixed at different 

values. One can observe that when failure rates are fixed at lower values λ0= 0.4, λD = 0.1, 

λP = 0.2 and λs= 0.3 the availability of the system decreases and probability of failure 

increase, with passage of time and ultimately becomes steady to the value zero after a 

sufficient long interval of time. Hence one can safely depict the future behavior of 

complex system at any time for any given set of parametric values, as is evident by the 

graphical consideration of the model.  

Table 8.2 yields the mean-time-to-failure (MTTF) of the system with respect to 

variation in λs, λp λ0, and λD respectively when other parameters have been kept constant. 

One can observe that with the increase in failure rates MTTF continuously decreases in all 

the cases except the increment in λP. It is interesting to note that in this case initially it 

decreases rapidly but after certain interval it starts increasing, which indicates that 

occurrence of failure λP in the range (0.3-0.5) is more frequent in comparison to other 

values of λP.  

When revenue cost per unit time K1 fixed at 1, service cost K2 = 0.50, 0.25, 0.15, 0.10, 

0.05, 0.02, 0.01 profit has been calculated and results are demonstrated by graphs. The 

values show that with the decrease in service cost expected profit increases with time. 

 

 

APPENDIX 

 

To find the transition state probabilities of the considered system find the Laplace 

transforms of equations (1)-(18). Then solve the Laplace transformed equations so 

obtained for (1) – (9) with the help of the boundary conditions and initial condition to find 

the transition state probabilities as given in the equations (19) - 27). Of course analytical 

mathematical concepts are to be used during the solution.  
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