• Title/Summary/Keyword: Guided ultrasonic waves

Search Result 99, Processing Time 0.028 seconds

Correlations of Phase Velocities of Guided Ultrasonic Waves with Cortical Thickness in Bovine Tibia (소의 경골에서 유도초음파의 위상속도와 피질골 두께 사이의 상관관계)

  • Lee, Kang-Il
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.1
    • /
    • pp.56-62
    • /
    • 2011
  • In the present study, the phase velocities of guided ultrasonic waves such as the first arriving signal (FAS) and the slow guided wave (SGW) propagating along the long axis on the 12 tubular cortical bone samples in vitro were measured and their correlations with the cortical thickness were investigated. The phase velocities of the FAS and the SGW were measured by using the axial transmission method in air with a pair of unfocused ultrasonic transducers with a diameter of 12.7 mm and a center frequency of 200 kHz. The phase velocity of the FAS measured at 200 kHz exhibited a very high negative correlation with the cortical thickness and that of the SGW arriving after the FAS showed a high positive correlation with the cortical thickness. The simple and multiple linear regression models with the phase velocities of the FAS and the SGW as independent variables and the cortical thickness as a dependent variable revealed that the coefficient of determination of the multiple linear regression model was higher than those of the simple linear regression models. The phase velocities of the FAS and the SGW measured at 200 kHz on the 12 tubular cortical bone samples were, respectively, consistent with those of the S0 and the A0 Lamb modes calculated at 200 kHz on the cortical bone plate.

Parametric density concept for long-range pipeline health monitoring

  • Na, Won-Bae;Yoon, Han-Sam
    • Smart Structures and Systems
    • /
    • v.3 no.3
    • /
    • pp.357-372
    • /
    • 2007
  • Parametric density concept is proposed for a long-range pipeline health monitoring. This concept is designed to obtain the attenuation of ultrasonic guided waves propagating in underwater pipelines without complicated calculation of attenuation dispersion curves. For the study, three different pipe materials such as aluminum, cast iron, and steel are considered, ten different transporting fluids are assumed, and four different geometric pipe dimensions are adopted. It is shown that the attenuation values based on the parametric density concept reasonably match with the attenuation values obtained from dispersion curves; hence, its efficiency is proved. With this concept, field engineers or inspectors associated with long-range pipeline health monitoring would take the advantage of easier capturing wave attenuation value, which is a critical variable to decide sensor location or sensors interval.

Damage Detection in a Plate Using an Orientation-adjustable Magnetostrictive Transducer (조향 자기변형 트랜스듀서를 이용한 평판 결함진단)

  • Cho, Seung-Hyun;Lee, Ju-Seung;Sun, Kyung-Ho;Kim, Yoon-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.1 s.94
    • /
    • pp.81-86
    • /
    • 2005
  • In this work, we propose a new ultrasonic damage inspection method in plate structures. The proposed method employs an OPMT(orientation-adjustable patch-type magnetostrictive transducer) in order to make the ultrasonic waves directed to a specific target point. For experiments, virtual grid points were set up at every 50 mm in an aluminum plate and two OPMTs were used for inspection. If there exists a crack in a plate, the reflected Lamb wave from the crack is measured in addition to the direct waves from the transmitting transducer to the receiving transducer.

Guided Wave Mode Selection and Flaw Detection for Long Range Inspection of Polyethylene Coated Steel Gas Pipes (폴리에틸렌 코팅 가스배관의 광범위탐상을 위한 유도초음파 모드 선정 및 결함 검출)

  • Song, Sung-Jin;Park, Joon-Soo;Shin, Hyeon-Jae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.4
    • /
    • pp.406-414
    • /
    • 2001
  • Ultrasonic guided waves were explored to apply them to the long range inspection of polyethylene coated steel gas pipes. The steel pipes have such dimensions as 190.7mm inside diameter and 5.3mm thickness. The outside surface of the pipe is coated by a polyethylene layer of $1.9{\pm}0.5mm$ thickness. Non-axisymmetric guided waves were excited on the outside surface of the polyethylene coated pipe by using a 0.5MHz transducer with a variable angle shoe. Frequency and phase velocity tuning was used to find optimum guided wave modes for the inspection. The dispersive characteristics of the modes were analyzed in time-frequency representation obtained by short time Fourier transforms. Sample results were presented for artificial defects such as wall thinning and hole.

  • PDF

PVDF interdigitated transducer for generating and detecting Lamb waves in plates

  • Gu, Hua;Lloyd, George M.;Wang, Ming L.
    • Smart Structures and Systems
    • /
    • v.4 no.3
    • /
    • pp.291-304
    • /
    • 2008
  • Piezoelectric materials have been widely used in ultrasonic nondestructive testing (NDT). PZT ceramics can be used to receive and generate surface acoustic waves. It is a common application to attach PZT transducers to the surface of structures for detecting cracks in nondestructive testing. However, not until recently have piezoelectric polymers attracted more and more attention to be the material for interdigitated (IDT) surface and guided-wave transducers. In this paper, an interdigitated gold-on-polyvinylidene fluoride (PVDF) transducer for actuating and sensing Lamb waves has been introduced. A specific etching technology is employed for making the surface electrodes into a certain finger pattern, the spacings of which yield different single mode responses of Lamb waves. Experiments have been performed on steel and carbon fiber composite plates. Results from PVDF IDT sensors have been compared with those from PZT transducers for verification.

Flaw Detection in Pipe-Welded Zone by Using Wavelet Transform and SH-EMAT (웨이브렛 변환과 SH-EMAT을 이용한 배관 용접부 결함 검출)

  • Lee, Jin-Hyuk;Kim, Dae-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1511-1519
    • /
    • 2012
  • Pipe structures contain many welded zones, and ultrasonic tests are increasingly being performed by using automated testing devices in order to evaluate the weld integrity. An electromagnetic acoustic transducer (EMAT) is a noncontact transducer that can transmit or receive ultrasonic waves without a couplant. Furthermore, it can easily generate specific guided waves such as SH (shear horizontal) or Lamb waves by altering the design of the coil and magnet. Therefore, an EMAT should be useful for application to an automated ultrasonic inspection system. In this study, SH waves generated using an EMAT were applied to inspect the pipe-weld zone. To analyze the specific SH mode (SH0) from the SH wave signals, wavelet transform was applied. It was found that flaws could be detected precisely because the intensity of the $SH_0$ mode-frequency, which is analyzed by using wavelet transform, is proportional to the length of the flaw.

Evaluation of Thickness Reduction in an Aluminum Sheet using SH-EMAT (SH-EMAT를 이용한 알루미늄 박판의 두께감육 평가)

  • Kim, Yong-Kwon;Park, Ik-Kuen
    • Journal of Welding and Joining
    • /
    • v.28 no.2
    • /
    • pp.74-78
    • /
    • 2010
  • In this paper, a non-contact method of evaluating the thickness reduction in an aluminum sheet caused by corrosion and friction using SH-EMAT (shear horizontal, electromagnetic acoustic transducer) is described. Since this method is based on the measurement of the time-of-flight and amplitude change of guided waves caused from the thickness reduction, it provides information on the thinning defects. Information was obtained on the changes of the various wave features, such as their time-of-flight and amplitude, and their correlations with the thickness reduction were investigated. The interesting features in the dispersive behavior of selected guided modes were used for the detection of thinning defects. The measurements of these features using SH waves were performed on aluminum specimens with regions thinned by 7.2% to 29.5% of the total thickness. It is shown that the time-of-flight measurement provides an estimation of the thickness reduction and length of the thinning defects.

Efficient Use of Lamb Waves and Their Wavelet Coefficients for Damage Detection of Steel Plates (강 구조물의 손상 검색을 위한 램 웨이브와 웨이브렛 계수의 효율적인 사용)

  • 박승희;윤정방;노용래
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.429-436
    • /
    • 2004
  • For the in-situ health monitoring of critical members in civil infra-structures, ultrasonic guided Lamb waves-based non-destructive evaluation (NDE) is very suitable. However, a chief drawback of the Lamb wave techniques is that multiple modes exist at all frequencies and the modes are generally dispersive, which means that the received signals may be very complicated. To overcome these complications, selective transmitting and receiving of a single A/sub 0/ mode within a frequency range can be adopted. Furthermore, a wavelet technique can be utilized to decompose the Lamb wave response into wavelet coefficients as a tool for signal processing. The changes in the Lamb waves interacting with damages in the steel plates are successfully characterized by this wavelet technique, through the amplitude change of the wavelet coefficients. In this paper, the feasibility of detecting a line crack on the surface of a steel plate and loosened bolts in a joint steel specimen using the Lamb waves and the wavelet technique is investigated.

  • PDF

Integrity evaluation of grouting in umbrella arch methods by using guided ultrasonic waves (유도초음파를 이용한 강관보강다단 그라우팅의 건전도 평가)

  • Hong, Young-Ho;Yu, Jung-Doung;Byun, Yong-Hoon;Jang, Hyun-Ick;You, Byung-Chul;Lee, Jong-Sub
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.3
    • /
    • pp.187-199
    • /
    • 2013
  • Umbrella arch method (UAM) used for improving the stability of the tunnel ground condition has been widely applied in the tunnel construction projects due to the advantage of obtaining both reinforcement and waterproof. The purpose of this study is to develop the evaluation technique of the integrity of bore-hole in UAM by using a non-destructive test and to evaluate the possibility of being applied to the field. In order to investigate the variations of frequency depending on grouted length, the specimens with different grouted ratios are made in the two constraint conditions (free boundary condition and embedded condition). The hammer impact reflection method in which excitation and reception occur simultaneously at the head of pipe was used. The guided waves generated by hitting a pipe with a hammer were reflected at the tip and returned to the head, and the signals were received by an acoustic emission (AE) sensor installed at the head. For the laboratory experiments, the specimens were prepared with different grouted ratios (25 %, 50 %, 75 %, 100 %). In addition, field tests were performed for the application of the evaluation technique. Fast Fourier transform and wavelet transform were applied to analyze the measured waves. The experimental studies show that grouted ratio has little effects on the velocities of guided waves. Main frequencies of reflected waves tend to decrease with an increase in the grouted length in the time-frequency domain. This study suggests that the non-destructive tests using guided ultrasonic waves be effective to evaluate the bore-hole integrity of the UAM in the field.

Evaluation of Thickness Reduction in Steel Plate by Using SH-EMATs (수평횡파 송수신용 EMAT를 이용한 스틸 박판의 두께 감육 평가)

  • Lee, Jin-Hyuk;Park, Ik-Keun;Kim, Yong-Kwon;Kim, Dae-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.1
    • /
    • pp.47-52
    • /
    • 2011
  • An electromagnetic acoustic transducer(EMAT) is a non-contact transducer which can transmit the ultrasonic guided waves into specimens without couplant. And it can easily generate specific guided waves such as SH(shear horizontal) or Lamb waves by altering the design of coil and magnet. In this study, the SH wave, which is generated by EMAT, has been applied to estimate the thickness-reduction in a steel plate. Especially, the interesting feature of the dispersive behavior in selected wave modes is used to detect the thickness-reduction. Experimental results show that the reduction-level can be quantified by the measurement of the group velocity of the wave which passes though the thinning area.