• Title/Summary/Keyword: Guide force moment

Search Result 15, Processing Time 0.02 seconds

Study on the Structural Reinforcements for the Transverse Vibration of Ship's Main Engine (선박 주기관 횡진동 구조보강 검토)

  • Im, Hong-Il;Shin, Sang-Hoon
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2013.12a
    • /
    • pp.55-59
    • /
    • 2013
  • Transverse vibrations of ship's aft end and deckhouse among the various modes of hull structures are induced mainly by transverse exciting forces and moments of main engine such as ${\times}$ and h-moment. Avoidance of resonance should be made in a intial design stage in case there is a prediction for resonance between main engine and transverse modes of deckhouse. This study shows a case of change in type of main engine from 12 cylinders to 10 without modification of hull structures in engine room requested by a shipowner of 8,600 TEU class container carrier and proposes a guide to the effective ways of structural arrangement for avoiding resonance between transverse exciting force and surrounding structures of main engine in engine room through case studies.

  • PDF

On the Instantaneous and Average Piston Friction of Swash Plate Type Hydraulic Axial Piston Machines

  • Jeong, Heon-Sul;Kim, Hyoung-Eui
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.10
    • /
    • pp.1700-1711
    • /
    • 2004
  • Piston friction is one of the important but complicated sources of energy loss of a hydraulic axial piston machine. In this paper, two formulas are derived for estimating instantaneous piston friction force and average piston friction moment loss. The derived formula can be applicable for piston guides with or without bushing as well as for axial piston machines of motoring and pumping operations. Through the formula derivation, a typical curve shape of friction force found from several experimental measurements during one revolution of a machine is clearly explained in this paper that it is mainly due to the equivalent friction coefficient dependent on its angular position. Stribeck curve effect can easily be incorporated into the formula by replacing outer and inner friction coefficients at both edges of a piston with the coefficient given by Manring (1999) considering mixed/boundary lubrication effects. Novel feature of the derived formula is that it is represented only by physical dimensions of a machine, hence it allows to estimate the piston friction force and loss moment of a machine without hardworking experimental test.

Simulation of turbulent flow of turbine passage with uniform rotating velocity of guide vane

  • Wang, Wen-Quan;Yan, Yan
    • Coupled systems mechanics
    • /
    • v.7 no.4
    • /
    • pp.421-440
    • /
    • 2018
  • In this study, a computational method for wall shear stress combined with an implicit direct-forcing immersed boundary method is presented. Near the immersed boundaries, the sub-grid stress is determined by a wall model in which the wall shear stress is directly calculated from the Lagrangian force on the immersed boundary. A coupling mathematical model of the transition process for a model Francis turbine comprising turbulent flow and rotating rigid guide vanes is established. The spatiotemporal distributions of pressure, velocity, vorticity and turbulent quantity are gained with the transient process; the drag and lift coefficients as well as other forces (moments) are also obtained as functions of the attack angle. At the same time, analysis is conducted of the characteristics of pressure pulsation, velocity stripes and vortex structure at some key parts of flowing passage. The coupling relations among the turbulent flow, the dynamical force (moment) response of blade and the rotating of guide vane are also obtained.

Crank Angles Design to Reduce the Excitation Forces in 4-stroke Diesel Engine (4행정 기관의 기진력 감소를 위한 크랭크 각 설계)

  • 서영수;박정근;정의봉
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.108-114
    • /
    • 2000
  • The excitation forces from the periodical firing pressure in cylinder and the rotating crank mechanism cause lots of vibration problems in diesel engine. In this paper, the theoretical formulas for excitation forces are introduced and computational program for the optimization of crank angle is also developed to reduce the free moments in diesel engine. The computational results of 4-stroke in-line engine are applied to verify the reliability of the program.

  • PDF

A Study of Loading Conditions for Developing the High-speed Bearings of the Gas-turbine Engine (가스터빈 엔진용 고속 베어링의 상세 설계를 위한 베어링 하중 조건에 관한 연구)

  • Kim, Sun Je;Kim, Yeong Ryeon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.4
    • /
    • pp.102-109
    • /
    • 2015
  • The methodology to calculate loads on the bearings of the gas-turbine engine is presented for design of high-speed bearing. Firstly, the loads on the bearings are formulated according to the force and moment equilibrium with gyroscopic moment in three-dimensional space. Afterward, operating loading conditions of the engine are presented by applying the Joint Service Specification Guide, and magnitudes of transient and steady bearing loads are estimated based on the operating conditions. The calculated loading conditions of the bearings will be used for the essential design boundaries for the detail structural design and rig test.

A Study on the Snake Motion of a Machine Tool Cross-Head Moving with Dry Friction on LM Guides (LM 가이드 상에서 건마찰 접촉을 하면서 운동하는 Cross Head의 사행동에 관한 연구)

  • 최영휴
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.708-713
    • /
    • 2000
  • This paper reviews the concepts of the snake motion which can be often observed on the bodies moving along guide rails. A simple modelling is proposed in order to analyze the snake motion of the cross head assembly and force and moment equilibrium equations are established. It is determined the critical conditions at which snake motion just brings about. Some possible methods to reduce or prevent snake motion are discussed in detail.

  • PDF

A Study on Improving the Impact Force of Impact Hammer Drill (충격햄머드릴의 타격력 향상을 위한 연구)

  • 김재환;정재천;박병규;백복현
    • Journal of KSNVE
    • /
    • v.7 no.4
    • /
    • pp.669-679
    • /
    • 1997
  • This paper deals with a study of striker type impact hammer drill for improving the drilling performance. The study was performed through a numerical simulation of the impact hammer mechanism and an experimental comparison of the numerical simulation results was followed. Optimization of the impact mechanism was also performed. The numerical model of the impact hammer drill takes into account the striker motion and the effects of the pressure in the cylinder as well as the friction acting on the striker. The equation of motion is solved with the pressure equation in the cylinder including the friction force. The friction is considered as a combination of Coulomb friction and viscous damping friction. At the moment of impact, an ideal impact model that uses restitution coefficient is used to calculate the sudden change of the striker motion. The numerically simulated impact force shows a good agreement with the experimental result and thus, the validity of the numerical model is proven. Based upon the proposed model, an optimization was performed to improve the impact force of the hammer drill. The objective function is to maximize the impact force and the used design variables are striker mass, frequency of piston, bit guide mass, cylindrical diameter and dimensions of the mechanism components. Each design variable and some other conditions that are essential to manitain normal operation of the hammer drill are considered as constraints. The optimized result show a remarkable improvement in impact force and an experimental proof was investigated.

  • PDF

Modeling and Design of Impact Hammer Drill (충격햄머드릴의 기구해석 및 설계)

  • 박병규;김재환;백복현;정재천
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.146-152
    • /
    • 1997
  • This paper deals with a study of striker type impact hammer drill for improving the drilling performance. The study was performed through a numerical simulation of the impact hammer mechanism, an experimental comparison of the numerical simulation results and an optimization of the impact mechanism. The numerical model of the impact hammer drill takes into account the striker motion and the effects of the pressure in the cylinder as well as the friction acting on the striker. The equation of motion is solved with the pressure equation in the cylinder and the friction force. At the moment of impact, an ideal impact model that uses restitutiion codfficient is used to calculate the sudden change of the striker motion. The impact force numerically simulated shows a good agreement with the experimental results and thus, the validity of the numerical model is proven. Based upon the proposed model, an optimization was performed to improve the impact force of the hammer drill. The objective function is to maximize the impact force and the design variables are striker mass, frequency of piston, bit guide mass, cylindrical diameter and dimensions of the mechanism components. Each design variable and some other conditions that are essential to maintain normal operation of the hammer drill are considered as constraints. The optimized result shows remarkable improvement in impact force and an experimental proof was investigated.

  • PDF

Development of float off Operation Design for Mdlti Semi-submersible Barges with Symmetrical Stability Casings (반 잠수식 복수부선의 진수설계)

  • 양영태;최문길;이춘보;박병남;성석부
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.2
    • /
    • pp.72-76
    • /
    • 2003
  • This paper presents the design concept and operation results of float-off for FSO (340,000 DWT Class, ELF AMENAM KPONO Project) built on the ground, without dry dock facilities. It was the first attempt to build FSO, completely, on the ground and launch it using DBU (Double Barge Unit, which was connected by rigid frame structure.) The major characteristics of FSO, which are similar to general VLCC type hull, including topside structure, weigh 51,000 metric ton. In order to have sufficient stability during the deck immersion of DBU, while passing through a minimum water plane area zone, proper trim control was completed with LMC (Load Master Computer). The major features of the monitoring system include calculation for transverse bending moment, shear force, local strength check of each connector, based on component stress, and deformation check during the load-out and float-off. Another major concern during the operation was to avoid damages at the bottom and sides of FSO, due to motion & movement after free-floating; therefore, adequate clearances between DBU and FSO were to be provided, and guide posts were installed to prevent side damage of the DBU casings. This paper also presents various measures that indecate the connector bending moment, damage stability analysis, and mooring of DBU during float off.

A Study on the Effect of Piston Pin Offset on a Piston Motion and Kinetic Energy Loss (피스톤핀 옵셋이 피스톤운동과 운동에너지 손실에 미치는 영향에 관한 연구)

  • Han, D.J.;Choi, J.K.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.3
    • /
    • pp.22-33
    • /
    • 1993
  • A theoretical analysis of predicting the detailed motion of a piston-crank mechanism within piston-guide clearance is presented, and the analysis is applied to the piston motion in a gasoline engine. A piston movement program is developed to calculate the piston attitude relative to the bore, the piston to bore impact velocity and kinetic energy loss and the net transverse force acting on the piston. This paper presents the formulation of a set of differential equations governing the transverse and rotational motion of a piston. These equations of motion were solved by well established Runge-Kutta method. As a result of this study, it is possible to predict the effects of piston geometry and piston pin offset on a piston motion and kinetic energy loss.

  • PDF