• Title/Summary/Keyword: Guidance and control system

Search Result 425, Processing Time 0.03 seconds

Design and Flight Test of Path Following System for an Unmanned Airship (무인 비행선의 자동 경로 추종 시스템 개발 및 비행시험)

  • Jung, Kyun-Myung;Sung, Jae-Min;Kim, Byoung-Soo;Je, Jeong-Hyeong;Lee, Sung-Gun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.5
    • /
    • pp.498-509
    • /
    • 2010
  • In this paper, a waypoint guidance law Line Tracking algorithm is designed for testing an Unmanned Airship. In order to verify, we develop an autonomous flight control and test system of unmanned airship. The flight test system is composed FCC (Flight Control Computer), GCS (Ground Control System), Autopilot & Guidance program, GUI (Graphic User Interface) based analysis program, and Test Log Sheet for the management of flight test data. It contains flight test results of single-path & multi-path following, one point continuation turn, LOS guidance, and safe mode for emergency.

A Shelter Guidance System using the PLC Communication (PLC 통신을 이용한 피난구 유도장치 시스템)

  • Lee, Chang-Young;Lee, Kyu-Yun;Lee, Hyun-Kwan;Kim, In-Kook;Eom, Ki-Hwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.583-586
    • /
    • 2005
  • We propose a shelter guidance system using the PLC communication to resolve that a conventional shelter guidance light for underground space has problems. The proposed shelter guidance system is composed of a main control part, a PLC remote control part, a charging part, a sound generation part, a display part, an alarm part and a smoke sensing part.. The efficacy of the proposed system is verified by means of experimental. Experimental results are presented that show the effectiveness and the improvement of noise.

  • PDF

Design the Guidance and Control for Precision Guidance Munitions using Reference Trajectory (기준궤적을 이용한 탄도수정탄 유도제어기 설계)

  • Sung, Jae min;Han, Eu Jene;Song, Min Sup;Kim, Byoung Soo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.181-188
    • /
    • 2015
  • This paper present, the result of the guidance and control law for a course correction munitions(CCM) with 2sets of canards positioned in the rotating nose section. The nonlinear simulation model of the CCM was developed based on 7DOF equation of motion. The ability of correcting position was verified by open-loop control input with nonlinear model. The guidance and control command was constructed by reference trajectory which can be obtained with no control. Finally, the performance of the guidance and control law was evaluated through Monte-carlo simulation. The CEP(Circular Error Probability) was obtained by considering the errors in muzzle velocity, aerodynamic coefficient, wind, elevation and azimuth angle and density.

A study on integrated guidance scheme for guided weapon system (유도무기를 위한 통합된 유도기법에 관한 연구)

  • 김병수;한형석;이장규;박성희;이재명;김삼수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.590-595
    • /
    • 1992
  • An integrated guidance scheme for guided weapon system is described in this paper. Against conventional guidance methods, this method combines an autopilot and a guidance law. The controller is designed using LQ regulator whose performance index is different from other optimal guidance laws. Since dynamics of the system is considered in the derivation, the controller performance is improved. By simulation, the suggested method shows better performance in minimum distance sense than conventional guidance schemes such as Bang Bang guidance or Pursuit Guidance. Since the suggested method provides smooth rudder deflection in contrast to the conventional method, the load on a energy source of the system can be greatly lessened.

  • PDF

Development and Flight Test of Unmanned Autonomous Rotor Navigation System Based on Virtual Instrumentation Platform (Virtual Instrumentation 플랫폼 기반 무인 자율 로터 항법시스템 개발 및 비행시험)

  • Lee, Byoung-Jin;Park, Sang-Jun;Lee, Seung-Jun;Kim, Chang-Joo;Lee, Young-Jae;Sung, Sang-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.8
    • /
    • pp.833-842
    • /
    • 2011
  • The objectives of this research are development of guidance, navigation and control system for RUAV on virtual instrumentation and real flight test. For this research, the system is divided to DAQ (data acquisition) section, actuator section and controller section. And the hardware and software on each sections are realized on LabVIEW base. Waypoint guidance and control of auto flight are realized using PID gain tuning and waypoint vector tracking guidance algorism. For safe flight test, auto/manual switching module isolated from FCS (Flight Control System) is developed. By using the switch module, swift mode change was achieved during emergency flight case. Consequently, a meter level error of flight performance is achieved.

Nonlinear Acceleration Controller Design for DACS Type Kill Vehicle (DACS형 직격요격비행체의 비선형 가속도 조종루프 설계)

  • Lee, Chang-Hun;Kim, Tae-Hun;Jun, Byung-Eul
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.3
    • /
    • pp.54-64
    • /
    • 2015
  • This paper deals with an acceleration controller design for a kill vehicle equipped with a divert and attitude control system (DACS). In the proposed method, the attitude control system (ACS) is used to produce the thrust command to nullify angle-of-attack. For the angle-of-attack control, a nonlinear angle-of-attack controller is proposed based on the feedback linearization methodology. Since the flight path angle is identical to the attitude angle under the condition of zero angle-of-attack, the divert control system (DCS) can directly produce the lateral acceleration which is demanded from the guidance loop. In the proposed method, we can minimize the aerodynamic uncertainty due to the propulsive force. Additionally, we can simplify the operation logic of DCS and ACS. In this paper, nonlinear simulations are performed to show the performance of the proposed method.

Path control of a mobile robot 'KMR-2' using odometer system (거리계를 이용한 이동로보트 'KMR-2'의 경로주행제어에 관한 연구)

  • 조형석;이대업;이종원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.142-147
    • /
    • 1988
  • Free-path-type guidance system does not need a hardwired path in the environment so that it gives a mobile robot a flexible path. ln this study to achieve the free-path-type guidance system for a mobile robot which is steered by the differential steering of both drive forewheels, position recognition systems are constructed using odometer system as an internal position sensor. Two odometer systems, a auxiliary wheel odometer and a 2-encoder odometer system are constructed and path following algorithms using these odometer systems are designed and experimented. PID control type is adopted in the path following algorithms.

  • PDF

Automatic Landing Guidance Law Design for Unmanned Aerial Vehicles based on Pursuit Guidance Law (추적유도기법 기반 무인항공기 자동착륙 유도법칙 설계)

  • Yoon, Seung-Ho;Bae, Se-Lin;Han, Young-Soo;Kim, Hyoun-Jin;Kim, You-Dan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.12
    • /
    • pp.1253-1259
    • /
    • 2008
  • This paper presents a landing controller and guidance law for net-recovery of fixed-wing unmanned aerial vehicles. A linear quadratic controller was designed using the system identification result of the unmanned aerial vehicle. A pursuit guidance law is applied to guide the vehicle to a recovery net with imaginary landing points on the desired approach path. The landing performance of a pure pursuit guidance, a constant pseudo pursuit guidance, and a variable pseudo pursuit guidance is compared. Numerical simulation using an unmanned aerial vehicle model was performed to verify the performance of the proposed landing guidance law.

Design of Longitudinal Auto-landing Guidance and Control System Using Linear Controller-based Adaptive Neural Network

  • Choi, Si-Young;Ha, Cheol-Keun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1624-1627
    • /
    • 2005
  • We proposed a design technique for auto-landing guidance and control system. This technique utilizes linear controller and neural network. Main features of this technique is to use conventional linear controller and compensate for the error coming from the model uncertainties and/or reference model mismatch. In this study, the multi-perceptron neural network with single hidden layer is adopted to compensate for the errors. Glide-slope capture logic for auto-landing guidance and control system is designed in this technique. From the simulation results, it is observed that the responses of velocity and pitch angle to commands are fairly good, which are directly related to control inputs of throttle and elevator, respectively.

  • PDF

Design of Guidance Law and Lateral Controller for a High Altitude Long Endurance UAV (고고도 장기체공 무인기의 유도 및 방향축 제어 알고리즘 설계)

  • Koo, Soyeon;Lim, Seunghan
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.2
    • /
    • pp.1-9
    • /
    • 2019
  • This paper elaborates on the directional axis guidance and control algorithm used in mission flight for high altitude long endurance UAV. First, the directional axis control algorithm is designed to modify the control variable such that a strong headwind prevents the UAV from moving forward. Similarly, the guidance algorithm is designed to operate the respective algorithms for Fly-over, Fly-by, and Hold for way-point flight. The design outcomes of each guidance and control algorithm were confirmed through nonlinear simulation of high altitude long endurance UAV. Finally, the penultimate purpose of this study was to perform an actual mission flight based on the design results. Consequently, flight tests were used to establish the flight controllability of the designed guidance and control algorithm.