• Title/Summary/Keyword: Guidance

Search Result 4,934, Processing Time 0.035 seconds

Development of Maintenance Training System by Using Haptic Guidance (햅틱 안내를 이용한 가상 유지보수 훈련 시스템의 개발)

  • Christiand, Christiand;Yoon, Jung-Won
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.49-54
    • /
    • 2008
  • In order to do a maintenance task, a maintenance operator should learn the basic skills of the maintenance task such as assembly and disassembly (A/D). However, the key of the learning process is to learn the A/D task intuitively and naturally. Haptic guidance promises to give effectiveness and benefit qualitatively since a person can be trained to do the optimal task based on information that comes from an expert, database, or intelligent algorithms. By applying haptic guidance, a maintenance training process can be made more intuitive and natural in a virtual environment. This paper describes the development of a maintenance training system by using haptic guidance.

  • PDF

Error Analysis Study on the Veering of Marine Target and the Midcourse Guidance of Anti-ship Missile (해상표적의 변침과 대함유도탄의 중기유도 오차분석 연구)

  • Kim, In-Soo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.582-590
    • /
    • 2020
  • This paper presents the results of new error analysis on the veering of marine target with the concept of frequency of occurrence, and shows how to apply the midcourse guidance errors of anti-ship missile. The veering error would be a dominant factor in the midcourse guidance errors with flight time increase. This study suggests the reasonable application method of the veering error based on the characteristics of abnormal error, and describes the tailoring method including trade-off between the midcourse guidance range of veering target and the value of frequency of occurrence on veering error.

Waypoints Guidance of the Nonlinear Helicopter using the SDRE Technique (SDRE 기법을 이용한 비선형 헬리콥터의 비행 경로점 유도제어)

  • Kim, Min-Jae;Yang, Chang-Deok;Hong, Ji-Seung;Kim, Chang-Joo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.9
    • /
    • pp.922-929
    • /
    • 2009
  • This paper deals with the State-Dependent Riccati Equation (SDRE) Technique for the design of helicopter nonlinear waypoint guidance controller. To generate the flight guidance through multiple waypoints, we use the trigonometric spline. The controller design and its validation is based upon a level 2 simulation helicopter model and the designed SDRE controller is applied to the trajectory tracking problems. To validate the designed SDRE controller, the simulation environment of high fidelity helicopter model is developed using three independent computers. This paper focuses on the validation the present SDRE controller through the helicopter waypoint guidance simulation.

Nonlinear Model Predictive Control for Multiple UAVs Formation Using Passive Sensing

  • Shin, Hyo-Sang;Thak, Min-Jea;Kim, Hyoun-Jin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.1
    • /
    • pp.16-23
    • /
    • 2011
  • In this paper, nonlinear model predictive control (NMPC) is addressed to develop formation guidance for multiple unmanned aerial vehicles. An NMPC algorithm predicts the behavior of a system over a receding time horizon, and the NMPC generates the optimal control commands for the horizon. The first input command is, then, applied to the system and this procedure repeats at each time step. The input constraint and state constraint for formation flight and inter-collision avoidance are considered in the proposed NMPC framework. The performance of NMPC for formation guidance critically degrades when there exists a communication failure. In order to address this problem, the modified optimal guidance law using only line-of-sight, relative distance, and own motion information is presented. If this information can be measured or estimated, the proposed formation guidance is sustainable with the communication failure. The performance of this approach is validated by numerical simulations.

Absolutely Stable Region for Missile Guidance Loop (유도탄 유도루프의 절대안정한 시간영역)

  • Kim, Jong-Ju;Lyou, Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.3
    • /
    • pp.244-249
    • /
    • 2008
  • In this paper, the stable region for missile guidance loop employing an integrated proportional navigation guidance law is derived. The missile guidance loop is formulated as a closed-loop control system consisting of a linear time-invariant feed-forward block and a time-varying feedback gain. By applying the circle criterion to the system, a bound for the time of flight up to which stability can be assured is established as functions of flight time. Less conservative results, as compared to the result by Popov criterion, are obtained.

Finite-Time Convergent Guidance Law Based on Second-Order Sliding Mode Control Theory

  • Ji, Yi;Lin, Defu;Wang, Wei;Lin, Shiyao
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.697-708
    • /
    • 2017
  • The complex battlefield environment makes it difficult to intercept maneuvering targets for guided missiles. In this paper, a finite-time convergent (FTC) guidance law based on the second-order sliding mode (SOSM) control theory is proposed to achieve the requirements of stability, accuracy and robustness. More specifically, a second-order sliding mode observer (SMOB) is used to estimate and compensate for the total disturbance of the controlled system, while the target acceleration is extracted from the line-of-sight (LOS) angle measurement. The proposed guidance law can drive the LOS angular rate converge to zero in a finite time, which means that the missile will accurately intercept the target. Numerical simulations with some comparisons are performed to demonstrate the superiority of the proposed guidance law.

Comprasion of Effectiveness of CT vs C-arm Guided Percutaneous Radiofrequency Lumbar Facet Rhizotomy

  • Park, Chan-Hong
    • The Korean Journal of Pain
    • /
    • v.23 no.2
    • /
    • pp.137-141
    • /
    • 2010
  • Background: Facet joint have been implicated as a source of chronic low back pain. Radiofrequency denervation has demonstrated the most solid evidence. To increase safety and efficacy of treatment, computed tomography (CT) guidance injection has been used in several disease. The purpose of this study was to evaluate the efficacy of CT-guided radiofrequency rhizotomy in the treatment of facet joint pain. Methods: A total of 40 patients were randomized to undergo radiofrequency facet joint denervation under CT guidance or C-arm guidance. All patients were examined visual analogue scale (VAS) score before treatment, 1 month, and 3 months after treatment. Results: The VAS in both groups showed significant improvement over the 1-month interval. No significant difference in the VAS score among the group was observed. Conclusions: In this study there was no significant difference between CT guidance lumbar rhizotomy and C-arm guidance lumbar rhizotomy. Therefore CT-guided radiofrequency denervation of the lumbar facet joint was a minimally invasive technique that appears effective.

Rotorcraft Waypoint Guidance Design Using SDRE Controller

  • Yang, Chang-Deok;Kim, Chang-Joo;Yang, Soo-Seok
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.2
    • /
    • pp.12-22
    • /
    • 2009
  • This paper deals with the State-Dependent Riccati Equation (SDRE) Technique for the design of rotorcraft waypoint guidance. To generate the flight trajectory through multiple waypoints, we use the trigonometric spline. The controller design and its validation is based upon a level 2 simulation rotorcraft model and the designed SDRE controller is applied to the trajectory tracking problems. To verify the designed guidance law, the simulation environment of high fidelity rotorcraft model is developed using three independent PCs. This paper focuses on the validation of rotorcraft waypoint guidance law which is designed by using SDRE Controller.

Adaptive nonsingular sliding mode based guidance law with terminal angular constraint

  • He, Shaoming;Lin, Defu
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.2
    • /
    • pp.146-152
    • /
    • 2014
  • In this paper, a new adaptive nonsingular terminal sliding mode control theory based impact angle guidance law for intercepting maneuvering targets was documented. In the design procedure, a new adaptive law for target acceleration bound estimation was presented, which allowed the proposed guidance law to be used without the requirement of the information on the target maneuvering profiles. With the aid of Lyapunov stability criteria, the finite-time convergent characteristics of the line-of-sight angle and its derivative were proven in theory. Numerical simulations were also performed under various conditions to demonstrate the effectiveness of the proposed guidance law.

Launch trajectory analysis of a scientific satellite M-3H-3 including guidance and control system (유도제어시스템을 포함한 과학위성 M-3H-3의 궤도해석)

  • 최재원;이장규;이승현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.59-64
    • /
    • 1989
  • In this paper, the launch trajectory of the Japan scientific satellite M-3H-3 from launch to orbit injection is investigated. For the terminal conditions at a guidance target point, a guidance and control system is used. An open-loop and a closed-loop guidance schemes are used simultaneously. For the closed-loop guidance scheme, the velocity polynomial algorithm represented by the velocity difference between the target point and present velocity is used. A PD control system is used for activating gimbal type engines. The simulation result shows that all the terminal position and velocity conditions are satisfied and the trajectory for the M-3H-3 scientific satellite is reasonable.

  • PDF