• Title/Summary/Keyword: Grunwald-winstein equation

Search Result 52, Processing Time 0.021 seconds

Correlation of the Rates of Solvolysis of Electron-Rich Benzoyl Chloride Using the Extended Grunwald-Wistein Equation

  • Oh, Hyunjung;Choi, Hojune;Park, Jong Keun;Yang, Kiyull;Koo, In Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.9
    • /
    • pp.2697-2701
    • /
    • 2013
  • The solvolysis rate constants of piperonyloyl chloride (1) in 27 different solvents are well correlated with the extended Grunwald-Winstein equation, using the $N_T$ solvent nucleophilicity scale, $Y_{Cl}$ solvent ionizing scale, and I aromatic ring parameter with sensitivity values of $0.30{\pm}0.05$, $0.71{\pm}0.02$, and $0.60{\pm}0.04$ for l, m, and h, respectively. The solvent kinetic isotope effect values (SKIE, $k_{MeOH}/k_{MeOD}$ and $k_{50%MeOD-50%D2O}$) of 1.16 and 1.12 were also in accord with the values for the $S_N1$ mechanism and/or the dissociative $S_N2$ mechanism. The product selectivity values (S) for solvolysis of 1 in alcohol/water mixtures were in the range of 0.5 to 1.9, which is also consistent with the proposed unimolecular ionization mechanism.

Kinetic and Theoretical Consideration of 3,4- and 3,5-Dimethoxybenzoyl Chlorides Solvolyses

  • Park, Kyoung-Ho;Kevill, Dennis N.
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.10
    • /
    • pp.2989-2994
    • /
    • 2013
  • The solvolysis rate constants of 3,4- (1) and 3,5-dimethoxybenzoyl (2) chlorides were measured in various pure and binary solvents at $25.0^{\circ}C$, and studied by application of the extended Grunwald-Winstein (G-W) equation, kinetic solvent isotope effect in methanolysis and activation parameters. The solvolysis of 1 was interpreted as the unimolecular pathway due to a predominant resonance effect from para-methoxy substituent like 4-methoxybenzoyl chloride (3), while that of 2 was evaluated as the dual mechanism, with unimolecular or bimolecular reaction pathway according to the character of solvent systems (high electrophilic/nucleophilic) chosen, caused by the inductive effect by two meta-methoxy substituents, no resonance one. In the solvolyses of 1 and 2 with two $-OCH_3$ groups, the resonance effect of para-methoxy substituent is more important to decide the mechanism than the inductive effect with other corresponding evidences.

Analysis of the Solvolysis of Anthraquinone-2-Carbonyl Chloride in Various Mixed Solvents

  • Koh, Han Joong;Kang, Suk Jin
    • Journal of the Korean Chemical Society
    • /
    • v.62 no.4
    • /
    • pp.265-268
    • /
    • 2018
  • The solvolyses of anthraquinone-2-carbonyl chloride (1) were studied kinetically in 27 pure and various mixed solvents. The analysis using the extended Grunwald-Winstein equation in the solvolyses of anthraquinone-2-carbonyl chloride (1) obtained the l value of $2.11{\pm}0.11$, the m value of $0.54{\pm}0.06$, and the correlation coefficient of 0.955. The solvolysis reaction of 1 might proceed via an associative $S_N2$ mechanism enhancing bond making than bond breaking in the transition state (TS). This interpretation is further supported by a relatively large solvent kinetic isotope effect (SKIE, 2.27).

Solvolysis of (1S)-(+)-Menthyl Chloroformate in Various Mixed Solvents

  • Koh, Han Joong;Kang, Suk Jin
    • Journal of the Korean Chemical Society
    • /
    • v.65 no.5
    • /
    • pp.309-312
    • /
    • 2021
  • The solvolysis of (1s)-(+)-menthyl chloroformate (1) were studied kinetically in 28 pure and various mixed solvents. The analysis using the extended Grunwald-Winstein equation in the solvolysis of 1 obtained the l value of 2.46 ± 0.18, the m value of 0.91 ± 0.07, and the correlation coefficient of 0.950. The solvolysis of 1 might proceed via an associative SN2 mechanism enhancing bond making than bond breaking in the transition state (TS). The value of l/m is 2.7 within the ranges of value found in associative SN2 reaction. This interpretation is further supported by a relatively large solvent kinetic isotope effect (SKIE, 2.16).

Mechanistic Studies of the Solvolyses of Cyclohexanesulfonyl Chloride

  • Kang, Suk Jin;Koh, Han Joong
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.4
    • /
    • pp.233-236
    • /
    • 2019
  • In this study, the solvolysis of cyclohexanesulfonyl chloride (1) was studied by kinetics in ethanol-water, methanol-water, acetone-water, and 2,2,2-trifluoroethanol (TFE)-water binary solvent systems. The rate constants were applied to the extended Grunwald-Winstein equation, to obtain the values of m = 0.41 and l = 0.81. These values suggested $S_N2$ mechanism in which bond formation is more important than bond breaking in the transition state (TS). Relatively small activation enthalpy values (11.6 to $14.8kcal{\cdot}mol^{-1}$), the large negative activation entropy values (-29.7 to $-38.7cal{\cdot}mol^{-1}{\cdot}K^{-1}$) and the solvent kinetic isotope effects (SKIE, 2.29, 2.30), the solvolyses of the cyclohexanesulfonyl chloride (1) proceeds via the $S_N2$ mechanism.

Kinetic Studies on Solvolyses of Substituted Cinnamoyl Chlorides in Alcohol-Water Mixture (알코올-물 혼합 용매계에서 치환된 염화신남오일의 가용매분해반응에 관한 속도론적 연구)

  • Koo, In Sun;Kim, Jung Soon;An, Sun Kyoung;Yang, Kyu Il;Lee, Ic Hoon
    • Journal of the Korean Chemical Society
    • /
    • v.43 no.5
    • /
    • pp.527-534
    • /
    • 1999
  • Solvolyses of para-substituted cinnamoyl chlorides in aqueous binary mixtures of acetone, ethanol, methanol were investigated at 25.0$^{\circ}C$. These data were interpreted using the Grunwald-Winstein relationship, Hammett equation, and quantum mechanical model. Grunwald-Winstein plots of the first-order rate constants for para-substituted cinnamoyl chlorides with $Y_{CI}$ showed marked dispersions into three separate curves for the three aqueous mixtures with a large m vaIue for aqueous alcohol solvents. This study has shown that the potential energy surface and quanturm mechanical model predict transition state variation correctly for $S_N1$ like $S_N2$ reaction mechanism of para-substituted cinnamoyl chlorides.

  • PDF

Rate and Product Studies with 2-Methyl-2-Chloroadamantane under Solvolytic Conditions

  • Lee, Young-Hoon;Seong, Mi-Hye;Lee, Eun-Sung;Lee, Yong-Woo;Won, Ho-Shik;Kyong, Jin-Burm;Kevill, Dennis N.
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1209-1214
    • /
    • 2010
  • Reactions of 2-methyl-2-chloroadamantane (1) in a variety of pure and binary solvents have been studied at various temperatures and pressures up to 80 MPa. The sensitivity (m) to changes in solvent ionizing power of the Grunwald-Winstein equation, and the activation volume (${\Delta}V^{\ddag}$) are calculated from the specific rates. An excellent linear relationship (R = 0.997) for 1, log (k/$k_0$) = $0.80Y_{Cl}$ + 0.11, and the activation volume, ${\Delta}V^{\ddag}$ = -15.2 ~ -10.2 $mL{\cdot}mol^{-1}$ were observed. These values are similar to those for solvolyses of 1-adamantyl halides over the full range of solvents, suggesting that the unimolecular mechanism involving ion pairs is rate-determining. These observations are also compared with those previously reported for the corresponding 1-adamantyl derivatives and chloroformate esters.