DOI QR코드

DOI QR Code

Rate and Product Studies with 2-Methyl-2-Chloroadamantane under Solvolytic Conditions

  • Lee, Young-Hoon (Department of Food and Biotechnology, Hanseo University) ;
  • Seong, Mi-Hye (Department of Chemistry and Applied Chemistry, Hanyang University) ;
  • Lee, Eun-Sung (Department of Chemistry and Applied Chemistry, Hanyang University) ;
  • Lee, Yong-Woo (Department of Chemistry and Applied Chemistry, Hanyang University) ;
  • Won, Ho-Shik (Department of Chemistry and Applied Chemistry, Hanyang University) ;
  • Kyong, Jin-Burm (Department of Chemistry and Applied Chemistry, Hanyang University) ;
  • Kevill, Dennis N. (Department of Chemistry and Biochemistry, Northern Illinois University)
  • Received : 2010.01.27
  • Accepted : 2010.03.02
  • Published : 2010.05.20

Abstract

Reactions of 2-methyl-2-chloroadamantane (1) in a variety of pure and binary solvents have been studied at various temperatures and pressures up to 80 MPa. The sensitivity (m) to changes in solvent ionizing power of the Grunwald-Winstein equation, and the activation volume (${\Delta}V^{\ddag}$) are calculated from the specific rates. An excellent linear relationship (R = 0.997) for 1, log (k/$k_0$) = $0.80Y_{Cl}$ + 0.11, and the activation volume, ${\Delta}V^{\ddag}$ = -15.2 ~ -10.2 $mL{\cdot}mol^{-1}$ were observed. These values are similar to those for solvolyses of 1-adamantyl halides over the full range of solvents, suggesting that the unimolecular mechanism involving ion pairs is rate-determining. These observations are also compared with those previously reported for the corresponding 1-adamantyl derivatives and chloroformate esters.

Keywords

References

  1. Eldik, R. V.; Asano, T.; Noble, J. L. Chem. Rev. 1978, 78, 407. https://doi.org/10.1021/cr60314a004
  2. Eldik, R. V.; Asano, T.; Noble, J. L. Chem. Rev. 1989, 89, 549. https://doi.org/10.1021/cr00093a005
  3. Drljaca, A.; Hubbard, C. D.; Eldik, R. V.; Asano, T.; Basilevsky, M. V.; Noble, J. L. Chem. Rev. 1998, 98, 2167. https://doi.org/10.1021/cr970461b
  4. Koskikallio, J.; Whalley, E. Trans. Faraday Soc. 1959, 55, 809. https://doi.org/10.1039/tf9595500809
  5. Whalley, E. Adv. Phys. Org. Chem. 1964, 2, 93. https://doi.org/10.1016/S0065-3160(08)60289-0
  6. Noble, J. L.; Kelm, H. Angew. Chem. Int. Ed. Engl. 1980, 19, 841. https://doi.org/10.1002/anie.198008413
  7. Hamann, S. D. Rev. Phys. Chem. Jpn. 1980, 50, 147.
  8. Schmidt, R. J. Phys. Chem. A 1998, 102, 9082. https://doi.org/10.1021/jp982276n
  9. March, J. Advanced Organic Chemistry, 4th ed.; John Wiley & Sons: New York, 1992; pp 293-500.
  10. Okuno, Y. J. Phys. Chem. A 1999, 103, 190. https://doi.org/10.1021/jp983795t
  11. Yamagami, C.; Sera, A.; Maruyama, K. Bull. Chem. Soc. Jpn. 1974, 47, 881. https://doi.org/10.1246/bcsj.47.881
  12. Grunwald, E.; Winstein, S. J. Am. Chem. Soc. 1949, 70, 846. https://doi.org/10.1021/ja01182a117
  13. Bentley, T. W.; Llewellyn, G. Prog. Phys. Org. Chem. 1990, 17, 121. https://doi.org/10.1002/9780470171967.ch5
  14. Kevill, D. N.; D’Souza, M. J. J. Chem. Res. Synop. 1993, 174.
  15. Bentley, T. W.; Cater, G. E. J. Am. Chem. Soc. 1982, 104, 5741. https://doi.org/10.1021/ja00385a031
  16. Koo, I. S.; Bentley, T. W.; Kang, D. H.; Lee, I. J. Chem. Soc., Perkin Trans. 2 1991, 296.
  17. Lomas, J. S.; D'Souza, M. J.; Kevill, D. N. J. Am. Chem. Soc. 1995, 117, 5891. https://doi.org/10.1021/ja00126a045
  18. Schleyer, P. von R.; Nicholas, R. D. J. Am. Chem. Soc. 1961, 83, 2700. https://doi.org/10.1021/ja01473a024
  19. McManus, S. P.; Somani, S.; Harris, J. M.; McGill, R. A. J. Org. Soc. 2004, 69, 8865. https://doi.org/10.1021/jo049798l
  20. Bentley, T. W.; Bowen, C. T.; Parker, W.; Watt, C. I. F. J. Am. Chem. Soc. 1979, 101, 2486. https://doi.org/10.1021/ja00503a043
  21. Bentley, T. W.; Bowen, C. T.; Parker, W.; Watt, C. I. F. J. Chem. Soc., Perkin Trans. 2 1980, 1244.
  22. Wells, P. R. Chem. Rev. 1963, 63, 171. https://doi.org/10.1021/cr60222a005
  23. Kaspi, J.; Rappoport, Z. J. Am. Chem. Soc. 1980, 102, 3829. https://doi.org/10.1021/ja00531a027
  24. McManus, S. P.; Safavy, A. J. Org. Chem. 1986, 51, 3532. https://doi.org/10.1021/jo00368a026
  25. Fainberg, A. H.; Winstein, S. J. J. Am. Chem. Soc. 1956, 78, 2770. https://doi.org/10.1021/ja01593a033
  26. Fisher, R. D.; Seib, R. C. Shiner, V. J.; Szele, J. I.; Tomic, M.; Sunko, D. E. J. Am. Chem. Soc. 1975, 97, 2408. https://doi.org/10.1021/ja00842a017
  27. Bentley, T. W.; Bowen, C. T.; Morten, D. H.; Schleyer, P.v. R. J. Am. Chem. Soc. 1981, 103, 5466. https://doi.org/10.1021/ja00408a031
  28. Adcock, W.; Trout, N. A.; Vercoe, D.; Taylor, D. K.; Shiner, V. J., Jr.; Sorensen, T. S. J. Org. Chem. 2003, 68, 5399. https://doi.org/10.1021/jo0300892
  29. Kwun, O. C.; Kim, J. R.; Kyong, J. B.; Lee, Y. H.; Kim, J. C. J. Korean Chem. Soc. 1996, 40, 327.
  30. Kim, D. K.; Kyong, J. B. J. Korean Chem. Soc. 2001, 45, 603.
  31. Glasstone, S.; Laidler, K. J.; Eyring, H. In The Theory of Rate Processes; McGraw-Hill: N. Y. and London, 1941.
  32. Kovacevic, D.; Majerski, Z.; Borcic, S.; Sunko, D. E. Tetrahedron 1972, 28, 2469. https://doi.org/10.1016/0040-4020(72)80082-6
  33. Seong, M. H.; Kyong, J. B.; Kim, D. K.; Kevill, D. N. Bull. Korean Chem. Soc. 2008, 29, 1747. https://doi.org/10.5012/bkcs.2008.29.9.1747

Cited by

  1. Correlation of the rates of solvolysis of tert-butyl chlorothioformate and observations concerning the reaction mechanism vol.3, pp.3, 2012, https://doi.org/10.5155/eurjchem.3.3.267-272.624
  2. Correlation of the Rates of Solvolysis of t-Butyl Fluoroformate Using the Extended Grunwald-Winstein Equation vol.31, pp.11, 2010, https://doi.org/10.5012/bkcs.2010.31.11.3366
  3. The Effect of the ortho Nitro Group in the Solvolysis of Benzyl and Benzoyl Halides vol.20, pp.16, 2010, https://doi.org/10.3390/ijms20164026