• 제목/요약/키워드: Growth substrate

검색결과 2,459건 처리시간 0.031초

바위털갯지렁이(Marphysa sanguinea) 유생의 착저와 초기 성장에 미치는 기질 크기 및 유기물 함량 (Effects of Substrate Sizes and Organic Contents on Larval Settlement and Growth in the Early Stage of the Polychaete Marphysa sanguinea)

  • 와와푸;김성균;김창훈
    • 한국수산과학회지
    • /
    • 제53권1호
    • /
    • pp.132-138
    • /
    • 2020
  • Marphysa sanguinea is the most well-known polychaete species with a high economic value. However, this species has a high mortality in the early rearing stage of aquaculture. This study was conducted to find out the optimal substrate size and organic contents for the growth and survival rate of M. sanguinea larvae and juveniles. It was observed that the smaller grain size (<Ø 0.063 mm) and high organic contents (5-10%) induced settlement and reduced settlement time of larvae. Moreover, the growth and survival rate of larvae reached high levels at Ø 0.004-0.016 mm of grain sizes and 5-7.5% of organic contents as advantageous substrates for settlement. The survival rate of juveniles reached over 90% in less than Ø 0.016 mm substrate on 15-day experiment for different grain sizes of substrates. These results indicated that substrate compositions of less than Ø 0.016 mm of sand size and 5-7.5% of organic contents in mud will enhance the productivity of M. sanguinea at the early stage.

화염합성 시의 탄소나노튜브와 나노섬유의 생성 및 성장 메커니즘 (Formation and Growth Mechanisms of Flame-Synthesized Carbon Nanotubes and Nanofibers)

  • 이교우;정종수;강경태;황정호
    • 한국연소학회지
    • /
    • 제9권1호
    • /
    • pp.18-24
    • /
    • 2004
  • Synthesis of carbon nanomaterials on a metal substrate by an ethylene fueled inverse diffusion flame was illustrated. Two stainless steel plates coated with $Ni(NO_3){_2}$ were folded with each other and used as a catalytic metal substrate. Carbon nanotubes and nanofibers with diameters of 20 - 60nm were found on the substrate. From the TEM-EDS analyses, most of the nanomaterials turned out to be Nicatalyzed. Carbon nanotubes were formed on the substrate in the region ranging from about 1,400K to 900K. The formation mechanisms of nanotubes and nanofibers were similar. The synthesis temperature of the nanofibers was lower than that of the nanotubes. The higher synthesis temperature of nanotubes might enhance the activity of the catalyst metal and produce more condensed carbons. The accumulated graphite layers led to form compartments to release the compressive stress in the layers. The growth of carbon nanotubes was bamboo-shaped showing compartments in the inside hollow. The distances between those compartments represented the growth rate that depended on the synthesis temperature.

  • PDF

Substrate Selection for Larval Settlement and Spat Growth in the Purple Clam, Saxidomus purpuratus (Sowerby) in Laboratory Culture

  • 이창훈;한기명;최진우
    • 한국패류학회지
    • /
    • 제21권1호
    • /
    • pp.65-70
    • /
    • 2005
  • The purpose of this study is to determine the appropriate substrate for larval settlement and spat growth in the purple clam, Saxidomus purpuratus in laboratory culture. Larvae were reared with 3 different types of sediments (mud, sand, and mixed) for 46 days in settlement experiment, and settled spats were further grown in 3 types of sediments for 36 weeks in growth experiment. The density of settled spats in muddy sediments was more than 2 times higher than those in mixed or sandy sediments. But, the average size of settled spats in muddy sediments was smaller than those in mixed or sandy sediments. After 36 weeks of growth period, growth rate decreased as shell length increased. When shell length was less than 2 mm, growth rate in mixed sediments was significantly higher than that in sandy sediments. When shell length was more than 2 mm, there was no significant difference in growth rate among different substrates. Sediment type affected growth rate only when the spats were relatively small (less than 2 mm). Muddy sediments seems better for larval settlement, while mixed sediments is best for spat growth. We suggest the laboratory procedure for enhancing seedling production of S. purpuratus.

  • PDF

Kinetics and Modelling of Cell Growth and Substrate Uptake in Centella asiatica Cell Culture

  • Omar, Rozita;Abdullah, M.A.;Hasan, M.A.;Rosfarizan, M.;Marziah, M.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제11권3호
    • /
    • pp.223-229
    • /
    • 2006
  • In this study, we have conducted kinetics and modelling studies of Centella asiatica cell growth and substrate uptake, in an attempt to evaluate cell growth for a better understanding and control of the process. In our bioreactor cultivation experiment, we observed a growth rate of 0.18/day, a value only 20% higher than was seen in the shake flask cultivation trial. However, the observed maximum cell dry weight in the shake flask, 10.5g/L, was 14% higher than was achieved in the bioreactor. Ninety seven percentage confidence was achieved via the fitting of three unstructured growth models; the Monod, Logistic, and Gompertz equations, to the cell growth data. The Monod equation adequately described cell growth in both cultures. The specific growth rate, however, was not effectively predicted with the Logistic and Gompertz equations, which resulted in deviations of up to 73 and 393%, respectively. These deviations in the Logistic and Gompertz models may be attributable to the fact that these models were developed for substrate-independent growth and fungi growth, respectively.

원유 유출 지역에서 자연암반과 양식 기질에 서식하는 참굴(Crassostrea gigas)의 초기 가입 특성 및 성장 비교 (Comparison of Recruitment and Growth Patterns of Pacific Oysters (Crassostrea gigas) between a Natural Rocky Shore and Farming Substrate Within an Oil Spill Contaminated Area of Korea)

  • 이혜미;윤건탁
    • Ocean and Polar Research
    • /
    • 제36권2호
    • /
    • pp.145-156
    • /
    • 2014
  • Macrobenthic biodiversity in the rocky intertidal areas of the Tae-an region, Republic of Korea, has decreased since the Hebei Spirit oil spill in December 2007. We aimed to investigate ecological roles of Pacific oyster (Crassostrea gigas) because recruitment and growth of oysters are critical to the recovery of damaged rocky shore ecosystem. We surveyed two sites monthly: natural rocky substrate and farming substrate, from July 2012 to January 2013 to identify and compare the changes in macrobenthic fauna. The abundance of young oysters was higher at the natural site. On the other hand, the mean height of oyster on the farming substrate was more than twice as great. The abundance of oyster at the natural site increased until October and then continuously decreased until end of study period. However, the abundance of oyster at the farming site constantly decreased from the beginning of study period. These different growth patterns might be attributable to spatial competition between oyster and a barnacle species (Balanus albicostatus) and environmental factors. At the natural site, physical stress factors including dramatic temperature changes and desiccation a few of the major factors limiting growth during aerial exposure. In addition, motile macrobenthos could be detrimental to oysters because they interrupt filter-feeding activities and hence hamper the growth of oysters. We show the higher recruitment of oysters at the natural site and healthy growth in the farming substrate are due to complicated differences in physical and biological stress factors.

MgO(100)기판에 성장시킨 Bi2212 에피택셜 박막의 R-T특성 (R-T characteristic of Bi2212 Epitaxial thin films by growth in MgO(100) substrate)

  • 양승호;임중관;박용필
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.537-538
    • /
    • 2006
  • BSCCO thin films have been fabricated by epitaxy growth at an ultra-low growth rate. The growth rates of the films was set in the region from 0.17 to 0.27 nm/min. MgO(100) was used as a substrate. In order to appreciate stable existing region of Bi 2212 phase with temperature and ozone pressure, the substrate temperature was varied between 650 and $720^{\circ}C$ and the highly condensed ozone gas pressure ($PO_3$) in vacuum chamber was varied between $2.0{\times}10^{-6}$ and $2.3{\times}10^{-5}\;Torr$.

  • PDF

투과 전자 현미경을 이용한 다이아몬드 박막과 실리콘 기판의 계면 연구 (Investigation of the interface between diamond film and silicon substrate using transmission electron microscopy)

  • 김성훈
    • 한국결정성장학회지
    • /
    • 제10권2호
    • /
    • pp.100-104
    • /
    • 2000
  • 다이아몬드 박막을 마이크로웨이브 플라즈마 방법을 이용하여 실리콘 기판위에 증착하였다. 증착된 다이아몬드 박막과 실리콘 기판의 단면을 이온 밀링 방법으로 식각한후, 경계면을 투과 전자 현미경으로 분석하였다. 다이아몬드 박막은 실리콘 기판위에 직접 성장되거나 또는 중간층이 형성된후 성장됨을 알 수 있었다. 중간층의 구성은 주로 Sic 또는 무정형 탄소로 이루어졌으며 중간층의 두께는 경계면을 따라 다르게 변하였다. 전자 회절 패턴으로부터, 경계면 주위에 잘 발달된 실리콘 기판과 다이아몬드의 결정면들이 서로 적합하게 성장되었고 있음을 알 수 있었다. 이 결과들로부터 실리콘 기판위에 성장되는 다이아몬드 박막의 초기 성장 형태를 추론할 수 있었다.

  • PDF

기판 각도에 따른 탄소나노월의 성장 특성 (Growth Properties of Carbon Nanowall According to the Substrate Angle)

  • 김성윤;정연호;한재찬;최원석
    • 한국전기전자재료학회논문지
    • /
    • 제26권9호
    • /
    • pp.686-689
    • /
    • 2013
  • The carbon nanowall (CNW) is a carbon-based nanomaterials and it was constructed with vertical structure graphenes and it has the highest surface density among carbon-based nanostructures. In this study, we have checked the growth properties of CNW according to the substrate angle. Microwave plasma enhanced chemical vapor deposition (PECVD) system was used to grow CNW on Si substrate with methane ($CH_4$) and hydrogen ($H_2$) gases. And, we have changed the substrate angle from $0^{\circ}$ to $90^{\circ}$ in steps of $30^{\circ}$. The planar and vertical conditions of the grown CNWs according to the substrate angle were characterized by a field emission scanning electron microscopy (FE-SEM) and energy dispersive spectroscopy (EDS). In case of the growth angle increases, our experimental results showed that the length of the CNW was shortened and the content of carbon component was decreased.

Kinetic Studies of Alkaline Protease from Bacillus licheniformis NCIM-2042

  • Bhunia, Biswanath;Basak, Bikram;Bhattacharya, Pinaki;Dey, Apurba
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권12호
    • /
    • pp.1758-1766
    • /
    • 2012
  • An extensive investigation was carried out to describe the kinetics of cell growth, substrate consumption, and product formation in the batch fermentation using starch as substrate. Evaluation of intrinsic kinetic parameters was carried out using a best-fit unstructured model. A nonlinear regression technique was applied for computational purpose. The Andrew's model showed a comparatively better $R^2$ value among all tested models. The values of specific growth rate (${\mu}_{max}$), saturation constant ($K_S$), inhibition constant ($K_I$), and $Y_{X/S}$ were found to be 0.109 $h^{-1}$, 11.1 g/l, 0.012 g/l, and 1.003, respectively. The Leudeking-Piret model was used to study the product formation kinetics and the process was found to be growth-associated. The growth-associated constant (${\alpha}$) for protease production was sensitive to substrate concentration. Its value was fairly constant up to a substrate concentration of 30.8 g/l, and then decreased.

Patterned substrate을 이용하여 MOCVD법으로 성장된 고효율 질화물 반도체의 광특성 및 구조 분석 (Investigation of Structural and Optical Properties of III-Nitride LED grown on Patterned Substrate by MOCVD)

  • 김선운;김제원
    • 한국재료학회지
    • /
    • 제15권10호
    • /
    • pp.626-631
    • /
    • 2005
  • GaN-related compound semiconductors were grown on the corrugated interface substrate using a metalorganic chemical vapor deposition system to increase the optical power of white LEDs. The patterning of substrate for enhancing the extraction efficiency was processed using an inductively coupled plasma reactive ion etching system and the surface morphology of the etched sapphire wafer and that of the non-etched surface were investigated using an atomic force microscope. The structural and optical properties of GaN grown on the corrugated interface substrate were characterized by a high-resolution x-ray diffraction, transmission electron microscopy, atomic force microscope and photoluminescence. The roughness of the etched sapphire wafer was higher than that of the non-etched one. The surface of III-nitride films grown on the hemispherically patterned wafer showed the nano-sized pin-holes that were not grown partially. In this case, the leakage current of the LED chip at the reverse bias was abruptly increased. The reason is that the hemispherically patterned region doesn't have (0001) plane that is favor for GaN growth. The lateral growth of the GaN layer grown on (0001) plane located in between the patterns was enhanced by raising the growth temperature ana lowering the reactor pressure resulting in the smooth surface over the patterned region. The crystal quality of GaN on the patterned substrate was also similar with that of GaN on the conventional substrate and no defect was detected in the interface. The optical power of the LED on the patterned substrate was $14\%$ higher than that on the conventional substrate due to the increased extraction efficiency.