• 제목/요약/키워드: Growth mechanism

검색결과 2,446건 처리시간 0.033초

Pulsed Electromagnetic Field Stimulators Efficacy for Noninvasive Bone Growth in Spine Surgery

  • Fiani, Brian;Kondilis, Athanasios;Runnels, Juliana;Rippe, Preston;Davati, Cyrus
    • Journal of Korean Neurosurgical Society
    • /
    • 제64권4호
    • /
    • pp.486-494
    • /
    • 2021
  • The growth of pulsed electromagnetic field (PEMF) therapy and its progress over the years for use in post-operative bone growth has been revolutionary in its effect on bone tissue proliferation and vascular flow. However, further progress in PEMF therapy has been difficult due to lack of more evidence-based understanding of its mechanism of action. Our objective was to review the current understanding of bone growth physiology, the mechanism of PEMF therapy action along with its application in spinal surgery and associated outcomes. The authors of this review examined multiple controlled, comparative, and cohort studies to compare fusion rates of patients undergoing PEMF stimulation. Examining spinal fusion rates, a rounded comparison of post-fusion outcomes with and without bone stimulator was performed. Results showed that postoperative spinal surgery PEMF stimulation had higher rates of fusion than control groups. Though PEMF therapy was proven more effective, multiple factors contributed to difficulty in patient compliance for use. Extended timeframe of treatment and cost of treatment were the main obstacles to full compliance. This review showed that PEMF therapy presented an increased rate of recovery in patients, supporting the use of these devices as an effective post-surgical aid. Given the recent advances in the development of PEMF devices, affordability and access will be much easier suited to the patient population, allowing for more readily available treatment options.

An advanced single-particle model for C3S hydration - validating the statistical independence of model parameters

  • Biernacki, Joseph J.;Gottapu, Manohar
    • Computers and Concrete
    • /
    • 제15권6호
    • /
    • pp.989-999
    • /
    • 2015
  • An advanced continuum-based multi-physical single particle model was recently introduce for the hydration of tricalcium silicate ($C_3S$). In this model, the dissolution and the precipitation events are modeled as two different yet simultaneous chemical reactions. Product precipitation involves a nucleation and growth mechanism wherein nucleation is assumed to happen only at the surface of the unreacted core and product growth is characterized via a two-step densification mechanism having rapid growth of a low density initial product followed by slow densification. Although this modeling strategy has been shown to nicely mimic all stages of $C_3S$ hydration - dissolution, dormancy (induction), the onset of rapid hydration, the transition to slow hydration and prolonged reaction - the major criticism is that many adjustable parameters are required. If formulated correctly, however, the model parameters are shown here to be statistically independent and significant.

WSi$_2$이상산화 기구에 대한 조사 (A Study of the mechanism for abnormal oxidation of WSi$_2$)

  • 이재갑;김창렬;김우식;이정용;김차연
    • 한국표면공학회지
    • /
    • 제27권2호
    • /
    • pp.83-90
    • /
    • 1994
  • We have investigated the mechanism for the abnormal oxide growth occuring during oxidation of the crystalline tungsten silicide. TEM and XPS analysis reveal the abnormaly grown oxide layer consisting of crystalline $Wo_3$ and amorphous $SiO_2$. The presence of crystalline $Wo_3$ provides a rapid diffusion of oxygen through the oxide layer. The abnormal oxide growth is mainly due to the poor quality of initial oxide layer growth on tungsten silicide. Two species such as tungsten and silicon from decomposition fo tungsten silicide as well as silicon supplied from the underlying polysilicon are the main contributors sto abnormal oxide forma-tion. Consequently, the abnormal oxidation results in the disintegration of tungsten silicide and thinning of polysilicon as well.

  • PDF

Understanding Role of Precursor (Crystal Violet) and its Polarity on MoS2 Growth; A First Principles Study

  • Ramzan, Muhammad Sufyan;Kim, Yong Hoon
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제5회(2016년)
    • /
    • pp.373-376
    • /
    • 2016
  • Transition metal dichalcogenides (TMDs) such as $MoS_2$ is the thinnest semiconductor, exhibits promising prospects in the applications of optoelectronics, catalysis and hydrogen storage devices. Uniform and high quality $MoS_2$ is highly desirable in large area for its applications on commercial scale and fundamental research. Many experimental techniques i.e CVD have been developed to successfully synthesis $MoS_2$ on large scale, here in this work atomistic detail to understand the growth mechanism is addressed which was greatly overlooked. Here based on first principles calculation we found that polarity of seeding promter (crystal violet considerd in this work) controls the growth mechanism. It is also found that molybdenum destroys the precursor while sulfur adsorption with precursor is favorable.

  • PDF

Thermal Degradation Kinetics of Antimicrobial Agent, Poly(hexamethylene guanidine) Phosphate

  • Lee, Sang-Mook;Jin, Byung-Suk;Lee, Jae-Wook
    • Macromolecular Research
    • /
    • 제14권5호
    • /
    • pp.491-498
    • /
    • 2006
  • The thermal degradation of poly(hexamethylene guanidine) phosphate (PHMG) was studied by dynamic thermogravimetric analysis (TGA) and pyrolysis-GC/MS (p-GC). Thermal degradation of PHMG occurs in three different processes, such as dephosphorylation, sublimation/vaporization of amine compounds and decomposition/ recombination of hydrocarbon residues. The kinetic parameters of each stage were calculated from the Kissinger, Friedman and Flynn-Wall-Ozawa methods. The Chang method was also used for comparison study. To investigate the degradation mechanisms of the three different stages, the Coats-Redfern and the Phadnis-Deshpande methods were employed. The probable degradation mechanism for the first stage was a nucleation and growth mechanism, $A_n$ type. However, a power law and a diffusion mechanism, $D_n$ type, were operated for the second degradation stage, whereas a nucleation and growth mechanism, $A_n$ type, were operated again for the third degradation stage of PHMG. The theoretical weight loss against temperature curves, calculated by the estimated kinetic parameters, well fit the experimental data, thereby confirming the validity of the analysis method used in this work. The life-time predicted from the kinetic equation is a valuable guide for the thermal processing of PHMG.

전해산화에 의한 백금전극상 전도성 폴리아닐린 피막의 생장 거동(II) (Growth Behavial Couctive PolyanilineFilm on a Platinum Electrode by Electrochemical Oxidation (II))

  • 신성호;이주성
    • 한국표면공학회지
    • /
    • 제21권3호
    • /
    • pp.95-102
    • /
    • 1988
  • The anodic oxidation of aniline in aqueous sulfuric acid solution on a platinum was studied. To examine of mechanism of this reaction, the date were obtained during controlled potential electrolysis, aided by computer system. The reaction mechanism was assumed the electrochemical-chemical-electrochemical(ECE) mechanism. We obtained the result that the intial charge transfer step proceeds through a radical cation, and this radical cation were bound cation led to may type of dimer in which p-aminodiphenylamine was de-electronated again to give the polymer.

  • PDF

Crystallization of High Purity Ammonium Meta-Tungstate for production of Ultrapure Tungsten Metal

  • Choi, Cheong-Song
    • 한국결정성장학회:학술대회논문집
    • /
    • 한국결정성장학회 1997년도 Proceedings of the 13th KACG Technical Meeting `97 Industrial Crystallization Symposium(ICS)-Doosan Resort, Chunchon, October 30-31, 1997
    • /
    • pp.1-5
    • /
    • 1997
  • The growth mechanism of AMT(Ammonium Meta-Tungstate) crystal was interpreted as two-step model. The contribution of the diffusion step increased with the increase of temperature, crystal size, and supersaturation. The crystal size distribution from a batch cooling crystallizer was predicted by the numerical solution of a mathematical model which uses the kinetics of nucleation and crystal growth. Temperature control of a batch crystallizer was studied using Learning control algorithm. The purity of AMT crystal producted in this investigation was above 99.99%.

  • PDF

Periodic domain formation in $>LiNbO_3$ single crystals during growth

  • Park, Jong-Koen
    • 한국결정성장학회:학술대회논문집
    • /
    • 한국결정성장학회 1998년도 PROCEEDINGS OF THE 14TH KACG TECHNICAL MEETING AND THE 5TH KOREA-JAPAN EMGS (ELECTRONIC MATERIALS GROWTH SYMPOSIUM)
    • /
    • pp.23-26
    • /
    • 1998
  • The domain formation phenomena of {{{{ { LiLbO}_{ 3} }}}} crystals was investigated and the method for the periodic domain formation in {{{{ { LiLbO}_{ 3} }}}} single crystals during growth was proposed in this study. The strees-induced domain formation mechanism was proposed and explained. The strong piezoelectric effect of{{{{ { LiLbO}_{ 3} }}}} at elevated temperature would be the direct driving force for the inversion of the tensile component of the internal stresses can inverse the original direction of the spontaneous polarization.

  • PDF

Conjugated Linoleic Acid에 의한 대장암 세포 증식 억제 기전 연구 (Study of the Mechanism for the Growth Inhibitory Effects of Conjugated Linoleic Acid on Caco-2 Colon Cancer Cells)

  • 김은지;오윤신;이현숙;박현서;윤정한
    • Journal of Nutrition and Health
    • /
    • 제36권3호
    • /
    • pp.270-279
    • /
    • 2003
  • Conjugated linoleic acid (CLA) is a group of positional and geometric isomers of linoleic acid (LA) and exhibits anticarcinogenic activity in a variety of animal models. We have previously observed that CLA inhibited the growth of Caco-2 cells, a human colon adenocarcinoma cell line. The present study was performed to determine whether the growth inhibitory effect of CLA is related to change in secretion of IGF- II and/or IGF-binding proteins (IGFBPs) that have been shown to regulate Caco-2 cell proliferation by an autocrine mechanism. Cells were incubated in serum-free medium with various concentrations of CLA or linoleic acid (LA). Immunoblot analysis of 24-hours, serum-free, conditioned medium using a monoclonal anti-IGF-IIantibody revealed that Caco-2 cells secreted both mature 6,500 Mr and higher Mr forms of pro IGF-II. The levels of pro IGF-II and mature IGF-IIwere decreased by 43 $\pm$ 2% and 53 $\pm$ 6%, respectively by treatment with 50 $\mu$ M CLA. LA slightly increased pro IGF- II levels. Results from Northern blot analysis showed that CLA decreased IGF-II mRNA levels at 50 $\mu$ M concentration suggesting that CLA regulation of IGF-II protein expression occurs partly at the transcriptional level. Ligand blot analysis of conditioned media using 1251-IGF-II revealed that CLA slightly decreased IGFBP-2 levels and increased IGFBP-4 levels. We confirmed our previous results that CLA inhibited cell growth in a dose-dependent manner but LA slightly increased cell growth. Exogenous IGF-II mitigated the growth inhibitory effect of CLA. These results indicate that the growth inhibitory effect of CLA may be at least in part mediated by decreasing IGF-II and IGFBP-2 secretion and increasing IGFBP-4 secretion in Caco-2 cells.

Controlled Growth of Large-area Mono-, Bi-, and Few-layer Graphene by Chemical Vapor Deposition on Copper Substrate

  • Kim, Yooseok;Lee, Su-il;Jung, Dae Sung;Cha, Myoung-Jun;Kim, Ji Sun;Park, Seung-Ho;Park, Chong-Yun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.380.2-380.2
    • /
    • 2014
  • Direct synthesis of graphene using a chemical vapor deposition (CVD) has been considered a facile way to produce large-area and uniform graphene film, which is an accessible method from an application standpoint. Hence, their fundamental understanding is highly required. Unfortunately, the CVD growth mechanism of graphene on Cu remains elusive and controversial. Here, we present the effect of graphene growth parameters on the number of graphene layers were systematically studied and growth mechanism on copper substrate was proposed. Parameters that could affect the thickness of graphene growth include the pressure in the system, gas flow rate, growth pressure, growth temperature, and cooling rate. We hypothesis that the partial pressure of both the carbon sources and hydrogen gas in the growth process, which is set by the total pressure and the mole fraction of the feedstock, could be the factor that controls the thickness of the graphene. The graphene on Cu was grown by the diffusion and precipitation mode not by the surface adsorption mode, because similar results were observed in graphene/Ni system. The carbon-diffused Cu layer was also observed after graphene growth under high CH4 pressure. Our findings may facilitate both the large-area synthesis of well-controlled graphene features and wide range of applications of graphene.

  • PDF