• Title/Summary/Keyword: Growth kinetic

Search Result 271, Processing Time 0.022 seconds

Towards grain-scale modelling of the release of radioactive fission gas from oxide fuel. Part I: SCIANTIX

  • Zullo, G.;Pizzocri, D.;Magni, A.;Van Uffelen, P.;Schubert, A.;Luzzi, L.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.2771-2782
    • /
    • 2022
  • When assessing the radiological consequences of postulated accident scenarios, it is of primary interest to determine the amount of radioactive fission gas accumulated in the fuel rod free volume. The state-of-the-art semi-empirical approach (ANS 5.4-2010) is reviewed and compared with a mechanistic approach to evaluate the release of radioactive fission gases. At the intra-granular level, the diffusion-decay equation is handled by a spectral diffusion algorithm. At the inter-granular level, a mechanistic description of the grain boundary is considered: bubble growth and coalescence are treated as interrelated phenomena, resulting in the grain-boundary venting as the onset for the release from the fuel pellets. The outcome is a kinetic description of the release of radioactive fission gases, of interest when assessing normal and off-normal conditions. We implement the model in SCIANTIX and reproduce the release of short-lived fission gases, during the CONTACT 1 experiments. The results show a satisfactory agreement with the measurement and with the state-of-the-art methodology, demonstrating the model soundness. A second work will follow, providing integral fuel rod analysis by coupling the code SCIANTIX with the thermo-mechanical code TRANSURANUS.

Ethylene-Induced Auxin Sensitivity Changes in Petiole Epinasty of Tomato Mutant dgt

  • Chang, Soo Chul;Lee, Myung Sook;Lee, Sang Man;Kim, Jinseok;Kang, Bin G.
    • Journal of Plant Biology
    • /
    • v.37 no.3
    • /
    • pp.257-262
    • /
    • 1994
  • The tomato (Lycopersicon esculentum Mill.) mutant diageotropica (dgt) lacking normal gravitropic response is known to be less sensitive to auxin compared with its isogenic parent VFN8. Straight growth as well as ethylene production in response to added auxin in hypocotyl segments of dgt was negligible. However, there was no significant difference between the two genotypes in auxin transport in petiole segments and its inhibition by the phytotropin N-1-naphthylphthalamic acid(NPA). Kinetic parameters of NPA binding to microsomal membranes were also non-distinguishable between the two. Its petiolar explants treated with ethylene developed epinastic curvature with the magnitude of response increased about 3 folds over non-mutant wild type. Ethylene-induced epinasty in both dgt and VFN8 was nullified by treatment of explants with the ethylene autagonist 2,5-norbonadiene. Lateral transport of 3H-IAA toward the upper side of ethylene-treated petioles in dgt, however, was not significantly more pronounced than in VFN8, the implications being that auxin sensitivity in the mutant was restored, or even rised above the wild type, by ethylene.

  • PDF

Reduction of Hydraulic Conductivity in the Subsurface by the Formation of Aerobic Biobarrier (토양 내 호기성 생물벽체(Biobarrier)의 형성에 의한 투수계수의 제어)

  • Bae, Bum-Han;Oh, Je-Ill
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.2
    • /
    • pp.1-8
    • /
    • 2007
  • A series of batch and column experiments were conducted for the development of biobarrier technology which can be applied to containment and reduction of contaminants in soil and ground waters. The growth kinetic constants of Pseudomonas fluorescens on glucose or molasses were determined using batch experiments. The maximum specific growth rate (Vmax) of P. fluorescens at $23^{\circ}C$ on glucose or molasses were $0.246\;hr^{-1}$ and $0.073\;hr^{-1}$, respectively. However, molasses was selected as carbon source due largely to the absence of lag phase of P. fluorescens growth on molasses and economic reason. In constant head column experiments, the hydraulic conductivity of the column soil reduced by $6.8{\times}10^{-3}$ times from $4.1{\times}10^{-2}cm/sec$ to $2.8{\times}10^{-4}cm/sec$ after the inoculation of P. fluorescens and administration of carbon source and nutrients. The biomass concentration was observed highest in the column inlet. Measurements of carbon source and electron accepter (dissolved oxygen) concentration showed that the growth of P. fluorescence, which is the main reason for hydraulic conductivity reduction, was limited not by the concentration of carbon source but by the concentration of electron acceptor.

Development of the pH Inhibition Model Adapting Pseudo Toxic Concentration (CPT) Concept for Activated Sludge Process (의사독성농도 (CPT) 개념을 도입한 활성슬러지 공정 pH 저해 모델 개발)

  • Ko, Joo-Hyung;Jang, Won-Ho;Im, Jeong-Hoon;Woo, Hae-Jin;Kim, Chang-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.11
    • /
    • pp.2037-2046
    • /
    • 2000
  • It has been reported that the inhibition effect of pH on activated sludge follows noncompetitive inhibition kinetics. However. the noncompetitive inhibition kinetic equation can not be directly applied to pH inhibition because of the difficulty in quantification of pH in terms of inhibitor concentration. So, many empirical equations have been developed to describe the pH inhibition effect especially for acidic condition. In this research. the pseudo toxic concentration ($C_{PT}$) concept model to quantify pH inhibition effect on activated sludge was proposed and compared to other existing models. The $C_{PT}$ concept model can explain the reduction of the maximum specific growth rate (${\mu}_{max}$) caused by the pH inhibition more accurately than any other models, at a wide range of pH. The only model parameter. $K_I$ can be easily estimated by Lineweaver-Burk linearization method.

  • PDF

Structural and Kinetic Characteristics of 1,4-Dioxane-Degrading Bacterial Consortia Containing the Phylum TM7

  • Nam, Ji-Hyun;Ventura, Jey-R S.;Yeom, Ick Tae;Lee, Yongwoo;Jahng, Deokjin
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.11
    • /
    • pp.1951-1964
    • /
    • 2016
  • 1,4-Dioxane-degrading bacterial consortia were enriched from forest soil (FS) and activated sludge (AS) using a defined medium containing 1,4-dioxane as the sole carbon source. These two enrichments cultures appeared to have inducible tetrahydrofuran/dioxane and propane degradation enzymes. According to qPCR results on the 16S rRNA and soluble di-iron monooxygenase genes, the relative abundances of 1,4-dioxane-degrading bacteria to total bacteria in FS and AS were 29.4% and 57.8%, respectively. For FS, the cell growth yields (Y), maximum specific degradation rate ($V_{max}$), and half-saturation concentration ($K_m$) were 0.58 mg-protein/mg-dioxane, $0.037mg-dioxane/mg-protein{\cdot}h$, and 93.9 mg/l, respectively. For AS, Y, $V_{max}$, and $K_m$ were 0.34 mg-protein/mg-dioxane, $0.078mg-dioxane/mg-protein{\cdot}h$, and 181.3 mg/l, respectively. These kinetics data of FS and AS were similar to previously reported values. Based on bacterial community analysis on 16S rRNA gene sequences of the two enrichment cultures, the FS consortium was identified to contain 38.3% of Mycobacterium and 10.6% of Afipia, similar to previously reported literature. Meanwhile, 49.5% of the AS consortium belonged to the candidate division TM7, which has never been reported to be involved in 1,4-dioxane biodegradation. However, recent studies suggested that TM7 bacteria were associated with degradation of non-biodegradable and hazardous materials. Therefore, our results showed that previously unknown 1,4-dioxane-degrading bacteria might play an important role in enriched AS. Although the metabolic capability and ecophysiological significance of the predominant TM7 bacteria in AS enrichment culture remain unclear, our data reveal hidden characteristics of the TM7 phylum and provide a perspective for studying this previously uncultured phylotype.

Prediction of Growth of Escherichia coli O157 : H7 in Lettuce Treated with Alkaline Electrolyzed Water at Different Temperatures

  • Ding, Tian;Jin, Yong-Guo;Rahman, S.M.E.;Kim, Jai-Moung;Choi, Kang-Hyun;Choi, Gye-Sun;Oh, Deog-Hwan
    • Journal of Food Hygiene and Safety
    • /
    • v.24 no.3
    • /
    • pp.232-237
    • /
    • 2009
  • This study was conducted to develop a model for describing the effect of storage temperature (4, 10, 15, 20, 25, 30 and $35^{\circ}C$) on the growth of Escherichia coli O157 : H7 in ready-to-eat (RTE) lettuce treated with or without (control) alkaline electrolyzed water (AIEW). The growth curves were well fitted with the Gompertz equation, which was used to determine the specific growth rate (SGR) and lag time (LT) of E. coli O157 : H7 ($R^2$ = 0.994). Results showed that the obtained SGR and LT were dependent on the storage temperature. The growth rate increased with increasing temperature from 4 to $35^{\circ}C$. The square root models were used to evaluate the effect of storage temperature on the growth of E. coli O157 : H7 in lettuce samples treated without or with AIEW. The coefficient of determination ($R^2$), adjusted determination coefficient ($R^2_{Adj}$), and mean square error (MSE) were employed to validate the established models. It showed that $R^2$ and $R^_{Adj}$ were close to 1 (> 0.93), and MSE calculated from models of untreated and treated lettuce were 0.031 and 0.025, respectively. The results demonstrated that the overall predictions of the growth of E. coli O157: H7 agreed with the observed data.

Real-time Observation of Evolution Dynamics of Ge Nanostructures on Si Surfaces by Photoelectron Emission Microscopy (자외선 광여기 전자현미경을 이용한 Si 표면 위에 Ge 나노구조의 성장 동역학에 관한 실시간 연구)

  • Cho, W.S.;Yang, W.C.;Himmerlich, M.;Nemanich, R.J.
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.2
    • /
    • pp.145-152
    • /
    • 2007
  • The evolution dynamics of nanoscale Ge islands on both Si (001) and (113) surfaces is explored using ultraviolet photoelectron emission microscopy (UV-PEEM). Real-time monitoring of the in-situ growth of the Ge island structures can allow us to study the variation of the size, the shape and the density of the nanostructures. For Ge depositions greater than ${\sim}4$ monolayer (ML) with a growth rate of ${\sim}0.4\;ML/min$ at temperatures of $450-550^{\circ}C$, we observed island nucleation on both surfaces indicating the transition from strained layer to island structure. During continuous deposition the circular islands grew larger via ripening processes. AFM measurements showed that the islands grown on Si (001) were dome-shaped while the islands on Si (113) were multiple-side faceted with flat tops of (113)-orientation. In contrast, for Ge deposition with a lower growth rate of ${\sim}0.15\;ML/min$ on Si(113), we observed the shape transition from circular into elongated island structures. The elongated islands grew longer along the [$33\bar{2}$] during continuous Ge deposition. The shape evolution of the islands is discussed in terms of strain relaxation and kinetic effects.

KINETIC STUDIES OF LACTIC ACID FERMENTATION(PART 2) INFLUENCE OF TEMPERATURE ON FERMENTATION (유산균 발효에 관한 동력학적 연구(제2보) 발효에 미치는 온도의 영향)

  • LEE Keun-Tai;LEE Myeong-Sook;HAN Bong-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.12 no.3
    • /
    • pp.161-166
    • /
    • 1979
  • To know the influence of temperature on the fermentation process, a strain of Lactobacillus bulgarius was experimentally cultured three different temperature conditions of $39^{\circ}C,\;42^{\circ}C\;and\;45^{\circ}C$, pH 5.8 and mechanical agitation of 500rpm. During 20 hour's fermentation, the microbial growth attained the maximum concentration under the conditions mentioned above. However, the culturing conditions resulted different outcomes in terms of maximum concentration of the microbes and the residual concentration of substrate. Among the three temperature conditions, the fermentation at $45^{\circ}C$ was most effective and the maximum specific growth temperature conditions, the fermentation at $45^{\circ}C$ was most effective and the maximum specific growth rate was 0.58/hr. Activation energy deduced from the Arrhenius equation was 9,220cal/mole and entropy was $-33.74\;cal/^{\circ}K$ mole. Activation enthalpy was 9,845 cal/mole and free energy was 19,800 cal/mole.

  • PDF

Effects of High Dose Gamma Irradiation on Shelf Stability and Lipid Oxidation of Marinated and Precooked Pork Rib Steak (고선량 감마선 조사가 즉석 취식용 양념 돼지 갈비 구이의 저장성 및 지질 산화에 미치는 영향)

  • Lee, Ju-Woon;Park, Jae-Nam;Kim, Jae-Hun;Park, Jin-Gyu;Kim, Cheon-Jei;Kim, Kwan-Soo;Byun, Myung-Woo
    • Food Science of Animal Resources
    • /
    • v.26 no.4
    • /
    • pp.471-477
    • /
    • 2006
  • This study was conducted to evaluate the application of high dose irradiation for ensuring shelf stability of marinated and precooked pork rib steak in the severe environments such as desert or space, etc. Marinated and precooked pork rib steak was manufactured, vacuum-packaged and gamma-irradiated with the absorbed doses of 10, 20, 30, 40 and 50 kGy, and used for the tests of the growth of microorganisms and lipid oxidation during storage at 35t of acceleration condition. Any growth of microorganisms was not observed in irradiated samples after irradiation immediately. However, the growths were observed in 10, 20 and 30 kGy samples at 4, 7 and 14 day storage, respectively. High dose (40 and 50 kGy) gamma irradiation retarded the growth of aerobic microorganisms by the analysis of kinetic parameter. The content of malondialdehyde increased in all samples during storage periods, and gamma irradiation accelerated the increase of lipid oxidation. Therefore, the application of combination of the various food processing technology should be considered for the sterilization of marinated and precooked pork rib steak without any deterioration of the quality occurred by high dose irradiation.

Growth kinetics and chlorine resistance of heterotrophic bacteria isolated from young biofilms formed on a model drinking water distribution system (모델 상수관망에 형성된 초기 생물막에서 분리한 종속영양세균의 생장 동역학 및 염소 내성)

  • Park, Se-Keun;Kim, Yeong-Kwan;Oh, Young-Sook;Choi, Sung-Chan
    • Korean Journal of Microbiology
    • /
    • v.51 no.4
    • /
    • pp.355-363
    • /
    • 2015
  • The present work quantified the growth of young biofilm in a model distribution system that was fed with chlorinated drinking water at a hydraulic retention time of 2 h. Bacterial biofilms grew on the surface of polyvinyl chloride (PVC) slides at a specific growth rate of $0.14{\pm}0.09day^{-1}$ for total bacteria and $0.16{\pm}0.08day^{-1}$ for heterotrophic bacteria, reaching $3.1{\times}10^4cells/cm^2$ and $6.6{\times}10^3CFU/cm^2$ after 10 days, respectively. The specific growth rates of biofilm-forming bacteria were found to be much higher than those of bulk-phase bacteria, suggesting that biofilm bacteria account for a major part of the bacterial production in this model system. Biofilm isolates exhibited characteristic kinetic properties, as determined by ${\mu}_{max}$ and $K_S$ values using the Monod model, in a defined growth medium containing various amounts of acetate. The lowest ${\mu}_{max}$ value was observed in bacterial species belonging to the genus Methylobacterium, and their slow growth seemed to confer high resistance to chlorine treatment (0.5 mg/L for 10 min). $K_S$ values (inversely related to substrate affinity) of Sphingomonas were two orders of magnitude lower for acetate carbon than those of other isolates. The Sphingomonas isolates may have obligate-oligotrophic characteristics, since the lower $K_S$ values allow them to thrive under nutrient-deficient conditions. These results provide a better understanding and control of multi-species bacterial biofilms that develop within days in a drinking water distribution system.